Peter F. Orlowski

Praktische Elektronik

Datenblätter Analog- und CMOS-Technik

4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output

The CA3140A and CA3140 are integrated circuit operational amplifiers that combine the advantages of high voltage PMOS transistors with high voltage bipolar transistors on a single monolithic chip.

The CA3140A and CA3140 BiMOS operational amplifiers feature gate protected MOSFET (PMOS) transistors in the input circuit to provide very high input impedance, very low input current, and high speed performance. The CA3140A and CA3140 operate at supply voltage from 4V to 36V (either single or dual supply). These operational amplifiers are internally phase compensated to achieve stable operation in unity gain follower operation, and additionally, have access terminal for a supplementary external capacitor if additional frequency roll-off is desired. Terminals are also provided for use in applications requiring input offset voltage nulling. The use of PMOS field effect transistors in the input stage results in common mode input voltage capability down to 0.5 V below the negative supply terminal, an important attribute for single supply applications. The output stage uses bipolar transistors and includes built-in protection against damage from load terminal short circuiting to either supply rail or to ground.

The CA3140 Series has the same 8-lead pinout used for the "741" and other industry standard op amps. The CA3140A and CA3140 are intended for operation at supply voltages up to 36 V ($\pm 18 \mathrm{~V}$).

Ordering Information

PART NUMBER (BRAND)	$\left.\begin{array}{c}\text { TEMP. } \\ \text { RANGE (}\end{array}{ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
CA3140AE	-55 to 125	8 Ld PDIP	E8.3
CA3140AM (3140A)	-55 to 125	8 Ld SOIC	M8.15
CA3140AS	-55 to 125	8 Pin Metal Can	T8.C
CA3140AT	-55 to 125	8 Pin Metal Can	T8.C
CA3140E	-55 to 125	8 Ld PDIP	E8.3
CA3140M (3140)	-55 to 125	8 Ld SOIC	M8.15
CA3140M96 (3140)	-55 to 125	8 Ld SOIC Tape and Reel	
CA3140T	-55 to 125	8 Pin Metal Can	T8.C

Features

- MOSFET Input Stage
- Very High Input Impedance (Z_{IN}) $-1.5 \mathrm{~T} \Omega$ (Typ)
- Very Low Input Current (I) -10pA (Typ) at $\pm 15 \mathrm{~V}$
- Wide Common Mode Input Voltage Range (VICR) - Can be Swung 0.5V Below Negative Supply Voltage Rail
- Output Swing Complements Input Common Mode Range
- Directly Replaces Industry Type 741 in Most Applications

Applications

- Ground-Referenced Single Supply Amplifiers in Automobile and Portable Instrumentation
- Sample and Hold Amplifiers
- Long Duration Timers/Multivibrators (μ seconds-Minutes-Hours)
- Photocurrent Instrumentation
- Peak Detectors
- Active Filters
- Comparators
- Interface in 5V TTL Systems and Other Low Supply Voltage Systems
- All Standard Operational Amplifier Applications
- Function Generators
- Tone Controls
- Power Supplies
- Portable Instruments
- Intrusion Alarm Systems

Pinouts

Absolute Maximum Ratings

DC Supply Voltage (Between V+ and V- Terminals) 36 3V
Differential Mode Input Voltage . 8V
DC Input Voltage . (V+ +8V) To (V- -0.5 V)
Input Terminal Current
Output Short Circuit Duration (Note 2) Indefinite
Operating Conditions
Temperature Range $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Thermal Information

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
2. Short circuit may be applied to ground or to either supply.

Electrical Specifications $\quad V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	TEST CONDITIONS		TYPICAL VALUES		UNITS
				CA3140	CA3140A	
Input Offset Voltage Adjustment Resistor		Typical Value of Resistor Between Terminals 4 and 5 or 4 and 1 to Adjust Max V_{IO}		4.7	18	$\mathrm{k} \Omega$
Input Resistance	R_{1}			1.5	1.5	T Ω
Input Capacitance	Cl_{1}			4	4	pF
Output Resistance	R_{O}			60	60	Ω
Equivalent Wideband Input Noise Voltage (See Figure 27)	e_{N}	$\mathrm{BW}=140 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{M} \Omega$		48	48	$\mu \mathrm{V}$
Equivalent Input Noise Voltage (See Figure 35)	e_{N}	$\mathrm{R}_{S}=100 \Omega$	$\mathrm{f}=1 \mathrm{kHz}$	40	40	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
			$\mathrm{f}=10 \mathrm{kHz}$	12	12	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Short Circuit Current to Opposite Supply	${ }^{\text {OM }}+$		Source	40	40	mA
	IOM^{-}		Sink	18	18	mA
Gain-Bandwidth Product, (See Figures 6, 30)	f_{T}			4.5	4.5	MHz
Slew Rate, (See Figure 31)	SR			9	9	V/us
Sink Current From Terminal 8 To Terminal 4 to Swing Output Low				220	220	$\mu \mathrm{A}$
Transient Response (See Figure 28)	tr_{r}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	Rise Time	0.08	0.08	$\mu \mathrm{s}$
	OS		Overshoot	10	10	\%
Settling Time at $10 V_{\text {P-P }}$, (See Figure 5)	ts	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { Voltage Follower } \end{aligned}$	To 1 mV	4.5	4.5	$\mu \mathrm{s}$
			To 10 mV	1.4	1.4	$\mu \mathrm{s}$

Electrical Specifications For Equipment Design, at $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	CA3140			CA3140A			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX		
Input Offset Voltage	\| V_{IO} \|	-	5	15	-	2	5	mV	
Input Offset Current	$\\|_{\text {IO }}$	-	0.5	30	-	0.5	20	pA	
Input Current	1	-	10	50	-	10	40	pA	
Large Signal Voltage Gain (Note 3) (See Figures 6, 29)	AOL	20	100	-	20	100	-	kV/V	
		86	100	-	86	100	-	dB	

Electrical Specifications For Equipment Design, at $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	CA3140			CA3140A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Common Mode Rejection Ratio (See Figure 34)	CMRR	-	32	320	-	32	320	$\mu \mathrm{V} / \mathrm{V}$
		70	90	-	70	90	-	dB
Common Mode Input Voltage Range (See Figure 8)	$V_{\text {ICR }}$	-15	-15.5 to +12.5	11	-15	-15.5 to +12.5	12	V
Power-Supply Rejection Ratio, $\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{V}_{\mathrm{S}}$ (See Figure 36)	PSRR	-	100	150	-	100	150	$\mu \mathrm{V} / \mathrm{V}$
		76	80	-	76	80	-	dB
Max Output Voltage (Note 4) (See Figures 2, 8)	$\mathrm{V}_{\mathrm{OM}}{ }^{+}$	+12	13	-	+12	13	-	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$	-14	-14.4	-	-14	-14.4	-	V
Supply Current (See Figure 32)	$1+$	-	4	6	-	4	6	mA
Device Dissipation	P_{D}	-	120	180	-	120	180	mW
Input Offset Voltage Temperature Drift	$\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{T}$	-	8	-	-	6	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

NOTES:
3. At $\mathrm{V}_{\mathrm{O}}=26 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}+12 \mathrm{~V},-14 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$.
4. At $R_{L}=2 k \Omega$.

Electrical Specifications For Design Guidance At $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		SYMBOL	TYPICAL VALUES		UNITS	
		CA3140	CA3140A			
Input Offset Voltage			$\left\|\mathrm{V}_{\mathrm{IO}}\right\|$	5	2	mV
Input Offset Current		$\|1 \mathrm{O}\|$	0.1	0.1	pA	
Input Current		1	2	2	pA	
Input Resistance		R_{1}	1	1	$T \Omega$	
Large Signal Voltage Gain (See Figures 6, 29)		$\mathrm{AOL}^{\text {O }}$	100	100	kV/V	
		100	100	dB		
Common Mode Rejection Ratio			CMRR	32	32	$\mu \mathrm{V} / \mathrm{V}$
		90		90	dB	
Common Mode Input Voltage Range (See Figure 8)		VICR	-0.5	-0.5	V	
		2.6	2.6	V		
Power Supply Rejection Ratio			PSRR $\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{V}_{\mathrm{S}}$	100	100	$\mu \mathrm{V} / \mathrm{V}$
		80		80	dB	
Maximum Output Voltage (See Figures 2, 8)		$\mathrm{V}_{\mathrm{OM}^{+}}$	3	3	V	
		VOM^{-}	0.13	0.13	V	
Maximum Output Current:	Source	lOM^{+}	10	10	mA	
	Sink	IOM^{-}	1	1	mA	
Slew Rate (See Figure 31)		SR	7	7	$\mathrm{V} / \mu \mathrm{s}$	
Gain-Bandwidth Product (See Figure 30)		f_{T}	3.7	3.7	MHz	
Supply Current (See Figure 32)		$1+$	1.6	1.6	mA	
Device Dissipation		P_{D}	8	8	mW	
Sink Current from Terminal 8 to Terminal 4 to Swing Output Low			200	200	$\mu \mathrm{A}$	

Block Diagram

Schematic Diagram

NOTE: All resistance values are in ohms.

Application Information

Circuit Description

As shown in the block diagram, the input terminals may be operated down to 0.5 V below the negative supply rail. Two class A amplifier stages provide the voltage gain, and a unique class $A B$ amplifier stage provides the current gain necessary to drive low-impedance loads.
A biasing circuit provides control of cascoded constant current flow circuits in the first and second stages. The CA3140 includes an on chip phase compensating capacitor that is sufficient for the unity gain voltage follower configuration.

Input Stage

The schematic diagram consists of a differential input stage using PMOS field-effect transistors $\left(Q_{9}, Q_{10}\right)$ working into a mirror pair of bipolar transistors $\left(Q_{11}, Q_{12}\right)$ functioning as load resistors together with resistors R_{2} through R_{5}. The mirror pair transistors also function as a differential-to-single-ended converter to provide base current drive to the second stage bipolar transistor $\left(\mathrm{Q}_{13}\right)$. Offset nulling, when desired, can be effected with a $10 \mathrm{k} \Omega$ potentiometer connected across Terminals 1 and 5 and with its slider arm connected to Terminal 4. Cascode-connected bipolar transistors Q_{2}, Q_{5} are the constant current source for the input stage. The base biasing circuit for the constant current source is described subsequently. The small diodes D_{3}, D_{4}, D_{5} provide gate oxide protection against high voltage transients, e.g., static electricity.

Second Stage

Most of the voltage gain in the CA3140 is provided by the second amplifier stage, consisting of bipolar transistor Q_{13} and its cascode connected load resistance provided by bipolar transistors Q_{3}, Q_{4}. On-chip phase compensation, sufficient for a majority of the applications is provided by C_{1}. Additional Miller-Effect compensation (roll off) can be accomplished, when desired, by simply connecting a small capacitor between Terminals 1 and 8 . Terminal 8 is also used to strobe the output stage into quiescence. When terminal 8 is tied to the negative supply rail (Terminal 4) by mechanical or electrical means, the output Terminal 6 swings low, i.e., approximately to Terminal 4 potential.

Output Stage

The CA3140 Series circuits employ a broad band output stage that can sink loads to the negative supply to complement the capability of the PMOS input stage when operating near the negative rail. Quiescent current in the emitter-follower cascade circuit $\left(Q_{17}, Q_{18}\right)$ is established by transistors $\left(Q_{14}, Q_{15}\right)$ whose base currents are "mirrored" to current flowing through diode D_{2} in the bias circuit section. When the CA3140 is operating such that output Terminal 6 is sourcing current, transistor Q_{18} functions as an emitter-follower to source current from the $\mathrm{V}+$ bus (Terminal 7), via $\mathrm{D}_{7}, \mathrm{R}_{9}$, and R_{11}. Under these conditions, the collector potential of Q_{13} is sufficiently high to permit the necessary flow of base current to emitter follower Q_{17} which, in turn, drives Q_{18}.

When the CA3140 is operating such that output Terminal 6 is sinking current to the V - bus, transistor Q_{16} is the current sinking element. Transistor Q_{16} is mirror connected to D_{6}, R_{7}, with current fed by way of Q_{21}, R_{12}, and Q_{20}. Transistor Q_{20}, in turn, is biased by current flow through R_{13}, zener D_{8}, and R_{14}. The dynamic current sink is controlled by voltage level sensing. For purposes of explanation, it is assumed that output Terminal 6 is quiescently established at the potential midpoint between the $\mathrm{V}+$ and V - supply rails. When output current sinking mode operation is required, the collector potential of transistor Q_{13} is driven below its quiescent level, thereby causing Q_{17}, Q_{18} to decrease the output voltage at Terminal 6. Thus, the gate terminal of PMOS transistor Q_{21} is displaced toward the V - bus, thereby reducing the channel resistance of Q_{21}. As a consequence, there is an incremental increase in current flow through $\mathrm{Q}_{20}, \mathrm{R}_{12}, \mathrm{Q}_{21}, \mathrm{D}_{6}, R_{7}$, and the base of Q_{16}. As a result, Q_{16} sinks current from Terminal 6 in direct response to the incremental change in output voltage caused by Q_{18}. This sink current flows regardless of load; any excess current is internally supplied by the emitter-follower Q_{18}. Short circuit protection of the output circuit is provided by Q_{19}, which is driven into conduction by the high voltage drop developed across R_{11} under output short circuit conditions. Under these conditions, the collector of Q_{19} diverts current from Q_{4} so as to reduce the base current drive from Q_{17}, thereby limiting current flow in Q_{18} to the short circuited load terminal.

Bias Circuit

Quiescent current in all stages (except the dynamic current sink) of the CA3140 is dependent upon bias current flow in R_{1}. The function of the bias circuit is to establish and maintain constant current flow through D_{1}, Q_{6}, Q_{8} and D_{2}. D_{1} is a diode connected transistor mirror connected in parallel with the base emitter junctions of Q_{1}, Q_{2}, and Q_{3}. D_{1} may be considered as a current sampling diode that senses the emitter current of Q_{6} and automatically adjusts the base current of Q_{6} (via Q_{1}) to maintain a constant current through $\mathrm{Q}_{6}, \mathrm{Q}_{8}, \mathrm{D}_{2}$. The base currents in $\mathrm{Q}_{2}, \mathrm{Q}_{3}$ are also determined by constant current flow D_{1}. Furthermore, current in diode connected transistor Q_{2} establishes the currents in transistors Q_{14} and Q_{15}.

Typical Applications

Wide dynamic range of input and output characteristics with the most desirable high input impedance characteristics is achieved in the CA3140 by the use of an unique design based upon the PMOS Bipolar process. Input common mode voltage range and output swing capabilities are complementary, allowing operation with the single supply down to 4 V .

The wide dynamic range of these parameters also means that this device is suitable for many single supply applications, such as, for example, where one input is driven below the potential of Terminal 4 and the phase sense of the output signal must be maintained - a most important consideration in comparator applications.

Output Circuit Considerations

Excellent interfacing with TTL circuitry is easily achieved with a single 6.2 V zener diode connected to Terminal 8 as shown in Figure 1. This connection assures that the maximum output signal swing will not go more positive than the zener voltage minus two base-to-emitter voltage drops within the CA3140. These voltages are independent of the operating supply voltage.

FIGURE 1. ZENER CLAMPING DIODE CONNECTED TO TERMINALS 8 AND 4 TO LIMIT CA3140 OUTPUT SWING TO TTL LEVELS

FIGURE 2. VOLTAGE ACROSS OUTPUT TRANSISTORS (\mathbf{Q}_{15} AND Q_{16}) vs LOAD CURRENT

Figure 2 shows output current sinking capabilities of the CA3140 at various supply voltages. Output voltage swing to the negative supply rail permits this device to operate both power transistors and thyristors directly without the need for
level shifting circuitry usually associated with the 741 series of operational amplifiers.

Figure 4 shows some typical configurations. Note that a series resistor, R_{L}, is used in both cases to limit the drive available to the driven device. Moreover, it is recommended that a series diode and shunt diode be used at the thyristor input to prevent large negative transient surges that can appear at the gate of thyristors, from damaging the integrated circuit.

Offset Voltage Nulling

The input offset voltage can be nulled by connecting a $10 \mathrm{k} \Omega$ potentiometer between Terminals 1 and 5 and returning its wiper arm to terminal 4, see Figure 3A. This technique, however, gives more adjustment range than required and therefore, a considerable portion of the potentiometer rotation is not fully utilized. Typical values of series resistors (R) that may be placed at either end of the potentiometer, see Figure 3B, to optimize its utilization range are given in the Electrical Specifications table.

An alternate system is shown in Figure 3C. This circuit uses only one additional resistor of approximately the value shown in the table. For potentiometers, in which the resistance does not drop to 0Ω at either end of rotation, a value of resistance 10% lower than the values shown in the table should be used.

Low Voltage Operation

Operation at total supply voltages as low as 4 V is possible with the CA3140. A current regulator based upon the PMOS threshold voltage maintains reasonable constant operating current and hence consistent performance down to these lower voltages.

The low voltage limitation occurs when the upper extreme of the input common mode voltage range extends down to the voltage at Terminal 4. This limit is reached at a total supply voltage just below 4 V . The output voltage range also begins to extend down to the negative supply rail, but is slightly higher than that of the input. Figure 8 shows these characteristics and shows that with 2 V dual supplies, the lower extreme of the input common mode voltage range is below ground potential.

FIGURE 3A. BASIC

FIGURE 3B. IMPROVED RESOLUTION

FIGURE 3C. SIMPLER IMPROVED RESOLUTION Figure 3. THREE OFFSET VOLTAGE NULLING METHODS

FIGURE 4. METHODS OF UTILIZING THE $V_{\text {CE(SAT) }}$ SINKING CURRENT CAPABILITY OF THE CA3140 SERIES

FIGURE 5A. WAVEFORM

FIGURE 5B. TEST CIRCUITS

FIGURE 5. SETTLING TIME vs INPUT VOLTAGE

Bandwidth and Slew Rate

For those cases where bandwidth reduction is desired, for example, broadband noise reduction, an external capacitor connected between Terminals 1 and 8 can reduce the open loop -3dB bandwidth. The slew rate will, however, also be proportionally reduced by using this additional capacitor. Thus, a 20% reduction in bandwidth by this technique will also reduce the slew rate by about 20%.

Figure 5 shows the typical settling time required to reach 1 mV or 10 mV of the final value for various levels of large signal inputs for the voltage follower and inverting unity gain amplifiers. The exceptionally fast settling time characteristics
are largely due to the high combination of high gain and wide bandwidth of the CA3140; as shown in Figure 6.

Input Circuit Considerations

As mentioned previously, the amplifier inputs can be driven below the Terminal 4 potential, but a series current limiting resistor is recommended to limit the maximum input terminal current to less than 1 mA to prevent damage to the input protection circuitry.

Moreover, some current limiting resistance should be provided between the inverting input and the output when the CA3140 is used as a unity gain voltage follower. This resistance prevents the possibility of extremely large input
signal transients from forcing a signal through the input protection network and directly driving the internal constant current source which could result in positive feedback via the output terminal. A $3.9 \mathrm{k} \Omega$ resistor is sufficient.

The typical input current is on the order of 10pA when the inputs are centered at nominal device dissipation. As the output supplies load current, device dissipation will increase, raising the chip temperature and resulting in increased input current. Figure 7 shows typical input terminal current versus ambient temperature for the CA3140.
It is well known that MOSFET devices can exhibit slight changes in characteristics (for example, small changes in input offset voltage) due to the application of large

FIGURE 6. OPEN LOOP VOLTAGE GAIN AND PHASE vs FREQUENCY

differential input voltages that are sustained over long periods at elevated temperatures.

Both applied voltage and temperature accelerate these changes. The process is reversible and offset voltage shifts of the opposite polarity reverse the offset. Figure 9 shows the typical offset voltage change as a function of various stress voltages at the maximum rating of $125^{\circ} \mathrm{C}$ (for metal can); at lower temperatures (metal can and plastic), for example, at $85^{\circ} \mathrm{C}$, this change in voltage is considerably less. In typical linear applications, where the differential voltage is small and symmetrical, these incremental changes are of about the same magnitude as those encountered in an operational amplifier employing a bipolar transistor input stage.

FIGURE 7. INPUT CURRENT vs TEMPERATURE

FIGURE 8. OUTPUT VOLTAGE SWING CAPABILITY AND COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

FIGURE 9. TYPICAL INCREMENTAL OFFSET VOLTAGE SHIFT vs OPERATING LIFE

Super Sweep Function Generator

A function generator having a wide tuning range is shown in Figure 10. The 1,000,000/1 adjustment range is accomplished by a single variable potentiometer or by an auxiliary sweeping signal. The CA3140 functions as a noninverting readout amplifier of the triangular signal developed across the integrating capacitor network connected to the output of the CA3080A current source.

Buffered triangular output signals are then applied to a second CA3080 functioning as a high speed hysteresis switch. Output from the switch is returned directly back to the input of the CA3080A current source, thereby, completing the positive feedback loop

The triangular output level is determined by the four 1N914 level limiting diodes of the second CA3080 and the resistor divider network connected to Terminal No. 2 (input) of the CA3080. These diodes establish the input trip level to this switching stage and, therefore, indirectly determine the amplitude of the output triangle.

Compensation for propagation delays around the entire loop is provided by one adjustment on the input of the CA3080. This adjustment, which provides for a constant generator amplitude output, is most easily made while the generator is sweeping. High frequency ramp linearity is adjusted by the single 7pF to 60pF capacitor in the output of the CA3080A.

It must be emphasized that only the CA3080A is characterized for maximum output linearity in the current generator function.

Meter Driver and Buffer Amplifier

Figure 11 shows the CA3140 connected as a meter driver and buffer amplifier. Low driving impedance is required of the CA3080A current source to assure smooth operation of the Frequency Adjustment Control. This low-driving impedance requirement is easily met by using a CA3140 connected as a voltage follower. Moreover, a meter may be
placed across the input to the CA3080A to give a logarithmic analog indication of the function generator's frequency.

Analog frequency readout is readily accomplished by the means described above because the output current of the CA3080A varies approximately one decade for each 60 mV change in the applied voltage, $\mathrm{V}_{\mathrm{ABC}}$ (voltage between Terminals 5 and 4 of the CA3080A of the function generator).
Therefore, six decades represent 360 mV change in $\mathrm{V}_{\mathrm{ABC}}$.
Now, only the reference voltage must be established to set the lower limit on the meter. The three remaining transistors from the CA3086 Array used in the sweep generator are used for this reference voltage. In addition, this reference generator arrangement tends to track ambient temperature variations, and thus compensates for the effects of the normal negative temperature coefficient of the CA3080A $\mathrm{V}_{\mathrm{ABC}}$ terminal voltage.

Another output voltage from the reference generator is used to insure temperature tracking of the lower end of the Frequency Adjustment Potentiometer. A large series resistance simulates a current source, assuring similar temperature coefficients at both ends of the Frequency Adjustment Control.

To calibrate this circuit, set the Frequency Adjustment Potentiometer at its low end. Then adjust the Minimum Frequency Calibration Control for the lowest frequency. To establish the upper frequency limit, set the Frequency Adjustment Potentiometer to its upper end and then adjust the Maximum Frequency Calibration Control for the maximum frequency. Because there is interaction among these controls, repetition of the adjustment procedure may be necessary. Two adjustments are used for the meter. The meter sensitivity control sets the meter scale width of each decade, while the meter position control adjusts the pointer on the scale with negligible effect on the sensitivity adjustment. Thus, the meter sensitivity adjustment control calibrates the meter so that it deflects $1 / 6$ of full scale for each decade change in frequency.

Sine Wave Shaper

The circuit shown in Figure 12 uses a CA3140 as a voltage follower in combination with diodes from the CA3019 Array to convert the triangular signal from the function generator to a sine-wave output signal having typically less than 2% THD. The basic zero crossing slope is established by the $10 \mathrm{k} \Omega$ potentiometer connected between Terminals 2 and 6 of the CA3140 and the $9.1 \mathrm{k} \Omega$ resistor and $10 \mathrm{k} \Omega$ potentiometer from Terminal 2 to ground. Two break points are established by diodes D_{1} through D_{4}. Positive feedback via D_{5} and D_{6} establishes the zero slope at the maximum and minimum levels of the sine wave. This technique is necessary because the voltage follower configuration approaches unity gain rather than the zero gain required to shape the sine wave at the two extremes.

FIGURE 10A. CIRCUIT

Top Trace: Output at junction of 2.7Ω and 51Ω resistors; 5V/Div., 500ms/Div.
Center Trace: External output of triangular function generator; 2V/Div., 500ms/Div.

Bottom Trace: Output of "Log" generator; 10V/Div., 500ms/Div.
FIGURE 10B. FIGURE FUNCTION GENERATOR SWEEPING

1V/Div., 1s/Div.
Three tone test signals, highest frequency $\geq 0.5 \mathrm{MHz}$. Note the slight asymmetry at the three second/cycle signal. This asymmetry is due to slightly different positive and negative integration from the CA3080A and from the PC board and component leakages at the 100pA level.

FIGURE 10C. FUNCTION GENERATOR WITH FIXED FREQUENCIES

FIGURE 10D. INTERCONNECTIONS

FIGURE 10. FUNCTION GENERATOR

FIGURE 11. METER DRIVER AND BUFFER AMPLIFIER

FIGURE 12. SINE WAVE SHAPER

FIGURE 13. SWEEPING GENERATOR

This circuit can be adjusted most easily with a distortion analyzer, but a good first approximation can be made by comparing the output signal with that of a sine wave generator. The initial slope is adjusted with the potentiometer R_{1}, followed by an adjustment of R_{2}. The final slope is established by adjusting R_{3}, thereby adding additional segments that are contributed by these diodes. Because there is some interaction among these controls, repetition of the adjustment procedure may be necessary.

Sweeping Generator

Figure 13 shows a sweeping generator. Three CA3140s are used in this circuit. One CA3140 is used as an integrator, a second device is used as a hysteresis switch that determines the starting and stopping points of the sweep. A third CA3140 is used as a logarithmic shaping network for the log function. Rates and slopes, as well as sawtooth, triangle, and logarithmic sweeps are generated by this circuit.

Wideband Output Amplifier

Figure 14 shows a high slew rate, wideband amplifier suitable for use as a 50Ω transmission line driver. This circuit, when used in conjunction with the function generator and sine wave shaper circuits shown in Figures 10 and 12 provides $18 \mathrm{~V}_{\text {P-P }}$ output open circuited, or $9 \mathrm{~V}_{\text {P-P }}$ output when terminated in 50Ω. The slew rate required of this amplifier is $28 \mathrm{~V} / \mu \mathrm{s}\left(18 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \times \pi \times 0.5 \mathrm{MHz}\right)$.

FIGURE 14. WIDEBAND OUTPUT AMPLIFIER

Power Supplies

High input impedance, common mode capability down to the negative supply and high output drive current capability are key factors in the design of wide range output voltage supplies that use a single input voltage to provide a regulated output voltage that can be adjusted from essentially 0 V to 24 V .

Unlike many regulator systems using comparators having a bipolar transistor input stage, a high impedance reference voltage divider from a single supply can be used in connection with the CA3140 (see Figure 15).

FIGURE 15. BASIC SINGLE SUPPLY VOLTAGE REGULATOR SHOWING VOLTAGE FOLLOWER CONFIGURATION

Essentially, the regulators, shown in Figures 16 and 17, are connected as non inverting power operational amplifiers with a gain of 3.2. An 8 V reference input yields a maximum output voltage slightly greater than 25 V . As a voltage follower, when the reference input goes to 0 V the output will be 0 V . Because the offset voltage is also multiplied by the 3.2 gain factor, a potentiometer is needed to null the offset voltage.

Series pass transistors with high $\mathrm{I}_{\mathrm{CBO}}$ levels will also prevent the output voltage from reaching zero because there is a finite voltage drop ($\mathrm{V}_{\text {CESAT }}$) across the output of the CA3140 (see Figure 2). This saturation voltage level may indeed set the lowest voltage obtainable.
The high impedance presented by Terminal 8 is advantageous in effecting current limiting. Thus, only a small signal transistor is required for the current-limit sensing amplifier. Resistive decoupling is provided for this transistor to minimize damage to it or the CA3140 in the event of unusual input or output transients on the supply rail.

Figures 16 and 17, show circuits in which a D2201 high speed diode is used for the current sensor. This diode was chosen for its slightly higher forward voltage drop characteristic, thus giving greater sensitivity. It must be emphasized that heat sinking of this diode is essential to minimize variation of the current trip point due to internal heating of the diode. That is, 1 A at 1 V forward drop represents one watt which can result in significant regenerative changes in the current trip point as the diode temperature rises. Placing the small signal reference amplifier in the proximity of the current sensing diode also helps minimize the variability in the trip level due to the negative temperature coefficient of the diode. In spite of those limitations, the current limiting point can easily be adjusted over the range from 10 mA to 1 A with a single adjustment potentiometer. If the temperature stability of the current limiting system is a serious consideration, the more usual current sampling resistor type of circuitry should be employed.
A power Darlington transistor (in a metal can with heatsink), is used as the series pass element for the conventional current limiting system, Figure 16, because high power Darlington dissipation will be encountered at low output voltage and high currents.

A small heat sink VERSAWATT transistor is used as the series pass element in the fold back current system, Figure 17, since dissipation levels will only approach 10W. In this system, the D2201 diode is used for current sampling. Foldback is provided by the $3 k \Omega$ and $100 \mathrm{k} \Omega$ divider network connected to the base of the current sensing transistor.

Both regulators provide better than 0.02% load regulation.
Because there is constant loop gain at all voltage settings, the

FIGURE 16. REGULATED POWER SUPPLY

5V/Div., 1s/Div.
FIGURE 18A. SUPPLY TURN-ON AND TURNOFF CHARACTERISTICS
regulation also remains constant. Line regulation is 0.1% per volt. Hum and noise voltage is less than $200 \mu \mathrm{~V}$ as read with a meter having a 10 MHz bandwidth.

Figure 18A shows the turn ON and turn OFF characteristics of both regulators. The slow turn on rise is due to the slow rate of rise of the reference voltage. Figure 18B shows the transient response of the regulator with the switching of a 20Ω load at 20 V output.

FIGURE 17. REGULATED POWER SUPPLY WITH "FOLDBACK" CURRENT LIMITING

Top Trace: Output Voltage; $200 \mathrm{mV} /$ Div., $5 \mu \mathrm{~s} /$ Div.
Bottom Trace: Collector of load switching transistor, load = 1A; 5V/Div., $5 \mu \mathrm{~s} /$ Div.

FIGURE 18B. TRANSIENT RESPONSE
FIGURE 18. WAVEFORMS OF DYNAMIC CHARACTERISTICS OF POWER SUPPLY CURRENTS SHOWN IN FIGURES 16 AND 17

Tone Control Circuits

High slew rate, wide bandwidth, high output voltage capability and high input impedance are all characteristics required of tone control amplifiers. Two tone control circuits that exploit these characteristics of the CA3140 are shown in Figures 19 and 20.

The first circuit, shown in Figure 20, is the Baxandall tone control circuit which provides unity gain at midband and uses standard linear potentiometers. The high input impedance of the CA3140 makes possible the use of lowcost, low-value, small size capacitors, as well as reduced load of the driving stage.

Bass treble boost and cut are $\pm 15 \mathrm{~dB}$ at 100 Hz and 10 kHz , respectively. Full peak-to-peak output is available up to at least 20 kHz due to the high slew rate of the CA3140. The amplifier gain is 3dB down from its "flat" position at 70 kHz .

Figure 19 shows another tone control circuit with similar boost and cut specifications. The wideband gain of this circuit is equal to the ultimate boost or cut plus one, which in this case is a gain of eleven. For 20 dB boost and cut, the input loading of this circuit is essentially equal to the value of the resistance from Terminal No. 3 to ground. A detailed analysis of this circuit is given in "An IC Operational Transconductance Amplifier (OTA) With Power Capability" by L. Kaplan and H. Wittlinger, IEEE Transactions on Broadcast and Television Receivers, Vol. BTR-18, No. 3, August, 1972.

NOTES:

5. 20dB Flat Position Gain.
6. $\pm 15 \mathrm{~dB}$ Bass and Treble Boost and Cut at 100 Hz and 10 kHz , respectively.
7. $25 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ output at 20 kHz .
8. -3 dB at 24 kHz from 1 kHz reference.

FOR DUAL SUPPLIES

FIGURE 19. TONE CONTROL CIRCUIT USING CA3130 SERIES (20dB MIDBAND GAIN)

FIGURE 20. BAXANDALL TONE CONTROL CIRCUIT USING CA3140 SERIES

Wien Bridge Oscillator

Another application of the CA3140 that makes excellent use of its high input impedance, high slew rate, and high voltage qualities is the Wien Bridge sine wave oscillator. A basic Wien Bridge oscillator is shown in Figure 21. When $R_{1}=R_{2}=R$ and $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$, the frequency equation reduces to the familiar $f=1 /(2 \pi R C)$ and the gain required for oscillation, AOSC is equal to 3 . Note that if C_{2} is increased by a factor of four and R_{2} is reduced by a factor of four, the gain required for oscillation becomes 1.5 , thus permitting a potentially higher operating frequency closer to the gain bandwidth product of the CA3140.

FIGURE 21. BASIC WIEN BRIDGE OSCILLATOR CIRCUIT USING AN OPERATIONAL AMPLIFIER

Oscillator stabilization takes on many forms. It must be precisely set, otherwise the amplitude will either diminish or reach some form of limiting with high levels of distortion. The element, R_{S}, is commonly replaced with some variable resistance element. Thus, through some control means, the value of R_{S} is adjusted to maintain constant oscillator output. A FET channel resistance, a thermistor, a lamp bulb, or other device whose resistance increases as the output amplitude is increased are a few of the elements often utilized.
Figure 22 shows another means of stabilizing the oscillator with a zener diode shunting the feedback resistor (R_{F} of Figure 21). As the output signal amplitude increases, the zener diode impedance decreases resulting in more feedback with consequent reduction in gain; thus stabilizing the amplitude of the output signal. Furthermore, this combination of a monolithic zener diode and bridge rectifier circuit tends to provide a zero temperature coefficient for this regulating system. Because this bridge rectifier system has no time constant, i.e., thermal time constant for the lamp bulb, and RC time constant for filters often used in detector networks, there is no lower frequency limit. For example, with $1 \mu \mathrm{~F}$ polycarbonate capacitors and $22 \mathrm{M} \Omega$ for the frequency determining network, the operating frequency is 0.007 Hz .

As the frequency is increased, the output amplitude must be reduced to prevent the output signal from becoming slewrate limited. An output frequency of 180 kHz will reach a slew rate of approximately $9 \mathrm{~V} / \mathrm{\mu s}$ when its amplitude is $16 \mathrm{~V}_{\mathrm{P}-\mathrm{P} \text {. }}$

FIGURE 22. WIEN BRIDGE OSCILLATOR CIRCUIT USING CA3140

Simple Sample-and-Hold System

Figure 23 shows a very simple sample-and-hold system using the CA3140 as the readout amplifier for the storage capacitor. The CA3080A serves as both input buffer amplifier and low feed-through transmission switch (see Note 13). System offset nulling is accomplished with the CA3140 via its offset nulling terminals. A typical simulated load of $2 \mathrm{k} \Omega$ and 30 pF is shown in the schematic.

FIGURE 23. SAMPLE AND HOLD CIRCUIT

In this circuit, the storage compensation capacitance $\left(\mathrm{C}_{1}\right)$ is only 200pF. Larger value capacitors provide longer "hold" periods but with slower slew rates. The slew rate is:

$$
\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{l}}{\mathrm{C}}=0.5 \mathrm{~mA} / 200 \mathrm{pF}=2.5 \mathrm{~V} / \mu \mathrm{s}
$$

NOTE:
13. AN6668 "Applications of the CA3080 and CA 3080A High Performance Operational Transconductance Amplifiers".

Pulse "droop" during the hold interval is $170 \mathrm{pA} / 200 \mathrm{pF}$ which is $0.85 \mu \mathrm{~V} / \mu \mathrm{s}$; (i.e., $170 \mathrm{pA} / 200 \mathrm{pF}$). In this case, 170 pA represents the typical leakage current of the CA3080A when strobed off. If C_{1} were increased to 2000 pF , the "hold-droop" rate will decrease to $0.085 \mu \mathrm{~V} / \mu \mathrm{s}$, but the slew rate would decrease to $0.25 \mathrm{~V} / \mu \mathrm{s}$. The parallel diode network connected between Terminal 3 of the CA3080A and Terminal 6 of the CA3140 prevents large input signal feedthrough across the input terminals of the CA3080A to the 200pF storage capacitor when the CA3080A is strobed off. Figure 24 shows dynamic characteristic waveforms of this sample-and-hold system.

Top Trace: Output; 50mV/Div., 200ns/Div. Bottom Trace: Input; 50mV/Div., 200ns/Div.

Top Trace: Output Signal; 5V/Div, $2 \mu \mathrm{~s} /$ Div.
Center Trace: Difference of Input and Output Signals through Tektronix Amplifier 7A13; $5 \mathrm{mV} /$ Div., $2 \mu \mathrm{~s} /$ Div. Bottom Trace: Input Signal; 5V/Div., $2 \mu \mathrm{~s} /$ Div.

LARGE SIGNAL RESPONSE AND SETTLING TIME

SAMPLING RESPONSE
Top Trace: Output; 100mV/Div., 500ns/Div. Bottom Trace: Input; 20V/Div., 500ns/Div.
FIGURE 24. SAMPLE AND HOLD SYSTEM DYNAMIC CHARACTERISTICS WAVEFORMS

Current Amplifier

The low input terminal current needed to drive the CA3140 makes it ideal for use in current amplifier applications such as the one shown in Figure 25 (see Note 14). In this circuit, low current is supplied at the input potential as the power supply to load resistor R_{L}. This load current is increased by the multiplication factor R_{2} / R_{1}, when the load current is monitored by the power supply meter M. Thus, if the load current is 100 nA , with values shown, the load current presented to the supply will be $100 \mu \mathrm{~A}$; a much easier current to measure in many systems.

FIGURE 25. BASIC CURRENT AMPLIFIER FOR LOW CURRENT MEASUREMENT SYSTEMS

Note that the input and output voltages are transferred at the same potential and only the output current is multiplied by the scale factor.
The dotted components show a method of decoupling the circuit from the effects of high output load capacitance and the potential oscillation in this situation. Essentially, the necessary high frequency feedback is provided by the capacitor with the dotted series resistor providing load decoupling.

Full Wave Rectifier

Figure 26 shows a single supply, absolute value, ideal fullwave rectifier with associated waveforms. During positive excursions, the input signal is fed through the feedback network directly to the output. Simultaneously, the positive excursion of the input signal also drives the output terminal (No. 6) of the inverting amplifier in a negative going excursion such that the 1N914 diode effectively disconnects the amplifier from the signal path. During a negative going excursion of the input signal, the CA3140 functions as a normal inverting amplifier with a gain equal to $-R_{2} / R_{1}$. When the equality of the two equations shown in Figure 26 is satisfied, the full wave output is symmetrical.

NOTE:

14. "Operational Amplifiers Design and Applications", J. G. Graeme, McGraw-Hill Book Company, page 308, "Negative Immittance Converter Circuits".

GAIN $=\frac{R_{2}}{R_{1}}=X=\frac{R_{3}}{R_{1} R_{2}+R_{3}}$
$R_{3}=\left(\frac{X+X^{2}}{1-X}\right) R_{1}$
FOR $X=0.5 \frac{5 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
$R_{3}=10 \mathrm{k} \Omega\left(\frac{0.75}{0.5}\right)=15 \mathrm{k} \Omega$
$20 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ Input BW $(-3 \mathrm{~dB})=290 \mathrm{kHz}, \mathrm{DC}$ Output $($ Avg $)=3.2 \mathrm{~V}$

FIGURE 26. SINGLE SUPPLY, ABSOLUTE VALUE, IDEAL FULL WAVE RECTIFIER WITH ASSOCIATED WAVEFORMS

FIGURE 27. TEST CIRCUIT AMPLIFIER (30dB GAIN) USED FOR WIDEBAND NOISE MEASUREMENT

FIGURE 28A. TEST CIRCUIT

Top Trace: Output; $50 \mathrm{mV} /$ Div., 200ns/Div. Bottom Trace: Input; $50 \mathrm{mV} /$ Div., 200ns/Div. FIGURE 28B. SMALL SIGNAL RESPONSE

(Measurement made with Tektronix 7A13 differential amplifier.)
Top Trace: Output Signal; 5V/Div., 5 $5 \mathrm{~s} /$ Div. Center Trace: Difference Signal; $5 \mathrm{mV} / \mathrm{Div}$., $5 \mu \mathrm{~s} /$ Div. Bottom Trace: Input Signal; 5V/Div., $5 \mu \mathrm{~s} /$ Div.

FIGURE 28C. INPUT-OUTPUT DIFFERENCE SIGNAL SHOWING SETTLING TIME

FIGURE 28. SPLIT SUPPLY VOLTAGE FOLLOWER TEST CIRCUIT AND ASSOCIATED WAVEFORMS

Typical Performance Curves

FIGURE 29. OPEN-LOOP VOLTAGE GAIN vs SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 31. SLEW RATE vs SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 33. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 30. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 32. QUIESCENT SUPPLY CURRENT vs SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 34. COMMON MODE REJECTION RATIO vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 35. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

FIGURE 36. POWER SUPPLY REJECTION RATIO vs FREQUENCY

Metallization Mask Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $\left(10^{-3}\right.$ inch $)$.

The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils $(0.17 \mathrm{~mm})$ larger in both dimensions.

LF351 Wide Bandwidth JFET Input Operational Amplifier

General Description

The LF351 is a low cost high speed JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF351 is pin compatible with the standard LM741 and uses the same offset voltage adjustment circuitry. This feature allows designers to immediately upgrade the overall performance of existing LM741 designs.
The LF351 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise and offset voltage drift, but for applications where these requirements are critical, the LF356 is recommended. If maximum supply

Typical Connection

current is important, however, the LF351 is the better choice

Features

- Internally trimmed offset voltage	10 mV
- Low input bias current	50 pA
- Low input noise voltage	$25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Wide gain bandwidth	4 MHz
- High slew rate	$13 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current	1.8 mA
- High input impedance	1012Ω
- Low total harmonic distortion $\mathrm{A}_{\mathrm{V}}=10$,	$<0.02 \%$
R $=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$	
- Low 1/f noise corner	
- Fast settling time to 0.01%	50 Hz

- Fast settling time to 0.01%
$2 \mu \mathrm{~s}$
Simplified Schematic

TL/H/5648-11

Connection Diagrams

Order Number LF351M or LF351N See NS Package Number M08A or N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage

Power Dissipation (Notes 1 and 6)	670 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}(\mathrm{MAX})}$	$115^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 2)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	Continuous
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 sec.)	
Metal Can	$300^{\circ} \mathrm{C}$
DIP	$260^{\circ} \mathrm{C}$

θ_{j}
$\begin{array}{lr}\mathrm{J} \text { N Package } & 120^{\circ} \mathrm{C} / \mathrm{W} \\ \text { M Package } & \text { TBD }\end{array}$
Soldering Information
Dual-In-Line Package
Soldering (10 sec.) $260^{\circ} \mathrm{C}$
Small Outline Package
Vapor Phase (60 sec.) $215^{\circ} \mathrm{C}$ Infrared (15 sec.) $220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating to be determined.

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	LF351			Units
			Min	Typ	Max	
Vos	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		5	$\begin{aligned} & 10 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & \mathrm{T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		25	$\begin{gathered} 100 \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & \mathrm{T}_{\mathrm{j}} \leq \pm 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		50	$\begin{gathered} 200 \\ 8 \\ \hline \end{gathered}$	pA nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1012		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ Over Temperature	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100		V / mV V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		V V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 5)	70	100		dB
Is	Supply Current			1.8	3.4	mA

AC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	LF351			Units
			Min	Typ	Max	
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: For operating at elevated temperature, the device must be derated based on the thermal resistance, θ_{JA}.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage
Note 3: These specifications apply for $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient emperature as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} . \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{j}} \mathrm{P}_{\mathrm{D}}$ where θ_{j} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 5: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. From $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$.
Note 6: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical Performance Characteristics

TL/H/5648-2

Typical Performance Characteristics (Continued)

TL/H/5648-3

Pulse Response

Application Hints

The LF351 is an op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET IITM). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will
cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output.
Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the

Application Hints (Continued)

common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
The LF351 is biased by a zener reference which allows normal circuit operation on $\pm 4 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The LF351 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed back-
wards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

LF351 Wide Bandwidth JFET Input Operational Amplifier
Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

LOW POWER DUAL OPERATIONAL AMPLIFIERS

- INTERNALLY FREQUENCY COMPENSATED
- LARGE DC VOLTAGE GAIN : 100dB
- WIDE BANDWIDTH (unity gain) : 1.1 MHz (temperature compensated)
. VERY LOW SUPPLY CURRENT/OP ($500 \mu \mathrm{~A}$) ESSENTIALLY INDEPENDENT OF SUPPLY VOLTAGE
- LOW INPUT BIAS CURRENT : 20nA (temperature compensated)
- LOW INPUT OFFSET VOLTAGE : 2 mV
- LOW INPUT OFFSET CURRENT : 2nA
- INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND
- DIFFERENTIAL INPUT VOLTAGE RANGE EQUAL TO THE POWER SUPPLY VOLTAGE
- LARGE OUTPUT VOLTAGE SWING OV TO $\left(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$

DESCRIPTION

These circuits consist of two independent, high gain, internally frequency compensated which were designed specifically to operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.
Application areas include transducer amplifiers, dc gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5 V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply.
In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.

(Plastic Package)

D SO8
(Plastic Micropackage)

P
TSSOP8
(Thin Shrink Small Outline Package)

ORDER CODES

Part	Temperature	Package		
Number Range	N	D	P	
LM158,A	$-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	\bullet	\bullet	\bullet
LM258,A	$-40^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$	\bullet	\bullet	\bullet
LM358,A	$0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$	\bullet	\bullet	\bullet
Example : LM258N				

PIN CONNECTIONS (top view)

SCHEMATIC DIAGRAM (1/2 LM158)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	LM158,A	LM258,A	LM358,A	Unit
V_{Cc}	Supply Voltage	+32	+32	+32	V
$\mathrm{~V}_{\mathrm{i}}$	Input Voltage	-0.3 to +32	-0.3 to +32	-0.3 to +32	V
$\mathrm{~V}_{\text {id }}$	Differential Input Voltage	+32	+32	+32	V
	Output Short-circuit Duration - (note 2)		Infinite		
$\mathrm{P}_{\text {tot }}$	Power Dissipation	500	500	500	mW
$\mathrm{I}_{\text {in }}$	Input Current - (note 1)	50	50	50	mA
$\mathrm{~T}_{\text {oper }}$	Operating Free-air Temperature Range	-55 to +125	-40 to +105	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}{ }^{-}=$Ground, $\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	$\begin{aligned} & \text { LM158A-LM258A } \\ & \text { LM358A } \end{aligned}$			$\begin{gathered} \text { LM158-LM258 } \\ \text { LM358 } \\ \hline \end{gathered}$			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathrm{V}_{\text {io }}$	$\begin{array}{ll} \hline \text { Input Offset Voltage }-(\text { note } 3) \\ \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} & \\ & \text { LM158, LM258 } \\ \mathrm{T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} . & \text { LM158A } \\ & \text { LM158, LM258 } \end{array}$		1	$\begin{aligned} & 3 \\ & 2 \\ & 2 \end{aligned}$		2	$\begin{aligned} & 7 \\ & 5 \\ & 9 \\ & 7 \end{aligned}$	mV
$\mathrm{I}_{\text {io }}$	$\begin{aligned} & \text { Input Offset Current } \\ & T_{\text {amb }}=25^{\circ} \mathrm{C} \\ & T_{\text {min. }} \leq T_{\text {amb }} \leq T_{\text {max }} . \end{aligned}$		2	$\begin{aligned} & 10 \\ & 30 \\ & \hline \end{aligned}$		2	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	nA
$\mathrm{l} \mathrm{l}^{\text {b }}$	$\begin{gathered} \text { Input Bias Current - (note 4) } \\ T_{\text {amb }}=25^{\circ} \mathrm{C} \\ T_{\text {min. }} \leq T_{\text {amb }} \leq T_{\text {max }} . \end{gathered}$		20	$\begin{gathered} 50 \\ 100 \end{gathered}$		20	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	nA
Avd	$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=1.4 \mathrm{~V} \text { to } 11.4 \mathrm{~V}\right) \\ & \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} . \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	100		$\begin{aligned} & 50 \\ & 25 \end{aligned}$	100		V/mV
SVR	$\begin{aligned} & \text { Supply Voltage Rejection Ratio }\left(\mathrm{RS}_{\mathrm{S}}=10 \mathrm{k} \Omega\right) \\ & \left(\mathrm{VCC}_{\mathrm{CC}}^{+}=5 \text { to } 30 \mathrm{~V}\right) \\ & T_{\text {amb }}=25^{\circ} \mathrm{C} \\ & T_{\text {min. }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\text {max }} . \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	100		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	100		dB
Icc	$\begin{gathered} \text { Supply Current, all Amp, no Load } \\ V_{C C}=+5 \mathrm{~V}, T_{\text {min. }} \leq T_{a m b} \leq T_{\text {max }} . \\ V_{C C}=+30 \mathrm{~V}, T_{\text {min. }} \leq T_{\text {amb }} \leq T_{\text {max }} . \end{gathered}$		0.7	$\begin{gathered} 1.2 \\ 2 \end{gathered}$		0.7	$\begin{gathered} 1.2 \\ 2 \end{gathered}$	mA
$\mathrm{V}_{\mathrm{icm}}$	Input Common Mode Voltage Range $\begin{gathered} \left(\mathrm{V}_{\mathrm{cC}}=+30 \mathrm{~V}\right)^{-}-(\text {note } 6) \\ T_{\text {amb }}=25^{\circ} \mathrm{C} \\ T_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq T_{\text {max }} . \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{gathered} V_{\mathrm{CC}^{+}}-1.5 \\ \mathrm{~V}_{\mathrm{CC}}{ }^{+}-2 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} V_{C C^{+}-1.5} \\ V_{C C^{+}-2} \end{gathered}$	V
CMR	$\begin{aligned} & \text { Common-mode Rejection Ratio }\left(\mathrm{Rs}_{\mathrm{s}}=10 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} . \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \\ & \hline \end{aligned}$	85		$\begin{aligned} & 70 \\ & 60 \end{aligned}$	85		dB
$I_{\text {source }}$	Output Current Source $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{0}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{id}}=+1 \mathrm{~V}\right)$	20	40	60	20	40	60	mA
$\mathrm{I}_{\text {sink }}$	$\begin{gathered} \text { Output Current Sink }\left(\mathrm{V}_{\text {id }}=-1 \mathrm{~V}\right) \\ \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=+0.2 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 10 \\ 12 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 50 \\ & \hline \end{aligned}$		$\begin{array}{r} 10 \\ 12 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 50 \\ & \hline \end{aligned}$		$\mathrm{mA}_{\mu \mathrm{A}}$
Vopp	$\begin{aligned} & \text { Output Voltage Swing }\left(\mathrm{RL}_{\mathrm{L}}=2 \mathrm{k} \Omega\right) \\ & T_{\text {amb }}=25^{\circ} \mathrm{C} \\ & T_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} . \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}^{+}-1.5} \\ \mathrm{VCC}^{+}-2 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}{ }^{+}-1.5 \\ \mathrm{VCC}^{+}-2 \\ \hline \end{gathered}$	V
V OH	$\begin{array}{cc} \hline \text { High Level Output Voltage }\left(\begin{array}{cl} \left(\mathrm{V}_{\mathrm{cc}}{ }^{+}=30 \mathrm{~V}\right) \\ \mathrm{R}_{\mathrm{L}} & =2 \mathrm{k} \Omega \\ T_{\text {amb }}=25^{\circ} \mathrm{C} & \\ T_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} . & \\ T_{\text {amb }}=25^{\circ} \mathrm{C} & \\ T_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max. }} . & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{array}\right. \end{array}$	$\begin{aligned} & 26 \\ & 26 \\ & 27 \\ & 27 \end{aligned}$	27 28		$\begin{aligned} & 26 \\ & 26 \\ & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 27 \\ & 28 \end{aligned}$		V
Vol	$\begin{aligned} & \text { Low Level Output Voltage }\left(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {min }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} . \end{aligned}$		5	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$		5	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	mV
SR	Slew Rate $\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0.5\right.$ to $3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ $2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, unity gain)	0.3	0.6		0.3	0.6		V/ $/ \mathrm{s}$
GBP	Gain Bandwidth Product $\left(\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}\right.$, $\mathrm{V}_{\mathrm{in}}=10 \mathrm{mV}, R_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$)	0.7	1.1		0.7	1.1		MHz
THD	$\begin{aligned} & \text { Total Harmonic Distortion } \\ & \left(\mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{v}}=20 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}\right. \text {, } \\ & \left.\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{pP}\right) \end{aligned}$		0.02			0.02		\%
e_{n}	Equivalent Input Noise voltage $\left(\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{s}}=100 \Omega, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}\right)$		55			55		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	LM158A LM258A LM358A			LM158 LM258 LM358			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	
DV ${ }_{\text {io }}$	Input Offset Voltage Drift		7	15		7	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Dlio	Input Offset Current Drift		10	200		10	300	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}$	Channel Separation (note 5) $1 \mathrm{kHz} \leq \mathrm{f} \leq 20 \mathrm{kHz}$		120			120		dB

Notes: 1. This input current only exist when the voltage at any of the input leads is driven negative. It is due to the collec-tor-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the V_{Cc} voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3 V .
2. Short-circuits from the output to V_{cc} can cause excessive heating if $\mathrm{V}_{\mathrm{Cc}}{ }^{+}>15 \mathrm{~V}$. The maximum output current is approximatively 40 mA independent of the magnitude of V_{cc}. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
3. $\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, 5 \mathrm{~V}<\mathrm{V}_{\mathrm{cc}}{ }^{+}<30 \mathrm{~V}, 0<\mathrm{V}_{\text {ic }}<\mathrm{V}_{\mathrm{cc}}{ }^{+}-1.5 \mathrm{~V}$.
4. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
5. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences.
6. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}_{\mathrm{CC}}{ }^{+}-1.5 \mathrm{~V}$.

But either or both inputs can go to +32 V without damage.

OPEN LOOP FREQUENCY RESPONSE (NOTE 3)

FREQUENCY (Hz)
VOLAGE FOLLOWER PULSE RESPONSE

LARGE SIGNAL FREQUENCY RESPONSE

FREQUENCY (Hz) OUTPUT CHARACTERISTICS

VOLTAGE FOLLOWER PULSSE RESPONSE
(SMALL SIGNAL)

INPUT CURRENT (Note 1)

OUTPUT CHARACTERISTICS

POSITIVE SUPPLY VOLTAGE (V)

 TEMPERATURE (${ }^{\circ} \mathrm{C}$)

60-55-35-15 525456585105125 TEMPERATURE (${ }^{\circ} \mathrm{C}$)

TYPICAL APPLICATIONS (single supply voltage) $\mathrm{Vcc}=+5 \mathrm{~V} D$

AC COUPLED INVERTING AMPLIFIER

NON-INVERTING DC AMPLIFIER

AC COUPLED NON-INVERTING AMPLIFIER

DC SUMMING AMPLIFIER

HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER

HIGH INPUT Z ADJUSTABLE GAIN DC INSTRUMENTATION AMPLIFIER

USING SYMMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT

LOW DRIFT PEAK DETECTOR

ACTIVE BAND-PASS FILTER

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dim.	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A		3.32			0.131	
a1	0.51			0.020		
B	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
e		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dim.	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
C	0.25		0.5	0.010		0.020
c1						
D	4.8		5.0	0.189		0.197
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.150		0.157
L	0.4		1.27	0.016		0.050
M			0.6			0.024
S	8^{0} (max.)					

PACKAGE MECHANICAL DATA
8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE

Dim.	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.20			0.05
A1	0.05		0.15	0.01		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.15
C	0.09		0.20	0.003		0.012
D	2.90	3.00	3.10	0.114	0.118	0.122
E		6.40			0.252	
E1	4.30	4.40	4.50	0.169	0.173	0.177
e		0.65			0.025	
k	0°		8°	0°		8°
I	0.50	0.60	0.75	0.09	0.0236	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a trademark of STMicroelectronics
© 1998 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

FEATURES

Low Vos: $75 \mu \mathrm{~V}$ maximum

Low Vos drift: $1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum
Ultrastable vs. time: $1.5 \mu \mathrm{~V}$ per month maximum
Low noise: $0.6 \mu \mathrm{~V}$ p-p maximum
Wide input voltage range: $\pm 14 \mathrm{~V}$ typical
Wide supply voltage range: $\pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
$125^{\circ} \mathrm{C}$ temperature-tested dice

APPLICATIONS

Wireless base station control circuits
Optical network control circuits
Instrumentation
Sensors and controls
Thermocouples
Resistor thermal detectors (RTDs)
Strain bridges
Shunt current measurements

Precision filters

GENERAL DESCRIPTION

The OP07 has very low input offset voltage ($75 \mu \mathrm{~V}$ maximum for OP07E) that is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for external nulling. The OP07 also features low input bias current ($\pm 4 \mathrm{nA}$ for the OP07E) and high open-loop gain ($200 \mathrm{~V} / \mathrm{mV}$ for the OP07E). The low offset and high open-loop gain make the OP07 particularly useful for high gain instrumentation applications.

PIN CONFIGURATION

Figure 1.

The wide input voltage range of $\pm 13 \mathrm{~V}$ minimum combined with a high CMRR of 106 dB (OP07E) and high input impedance provide high accuracy in the noninverting circuit configuration. Excellent linearity and gain accuracy can be maintained even at high closed-loop gains. Stability of offsets and gain with time or variations in temperature is excellent. The accuracy and stability of the OP07, even at high gain, combined with the freedom from external nulling have made the OP07 an industry standard for instrumentation applications.

The OP07 is available in two standard performance grades. The OP07E is specified for operation over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ range, and the OP 07 C is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

The OP07 is available in epoxy 8-lead PDIP and 8-lead narrow SOIC packages. For CERDIP and TO-99 packages and standard microcircuit drawing (SMD) versions, see the OP77.

Figure 2. Simplified Schematic

Rev. G
Information furmished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Pin Configuration 1
Revision History 2
Specifications. 3
OP07E Electrical Characteristics 3
OP07C Electrical Characteristics 4
REVISION HISTORY
10/11—Rev. F. to Rev G
Changes to Features Section. 1
8/10—Rev. E. to Rev F
Changes to Ordering Guide 14
7/09—Rev. D. to Rev E
Changes to Figure 29 Caption. 11
Changes to Ordering Guide 14
7/06-Rev. C. to Rev D
Changes to Features. 1
Changes to General Description 1
Changes to Specifications Section 3
Changes to Table 4. 6
Changes to Figure 6 and Figure 8 7
Changes to Figure 13 and Figure 14. 8
Changes to Figure 20 9
Changes to Figure 21 to Figure 25. 10
Changes to Figure 26 and Figure 30 11
Replaced Figure 28 11
Changes to Applications Information Section. 12
Updated Outline Dimensions 13
Changes to Ordering Guide 14
Absolute Maximum Ratings 6
Thermal Resistance 6
ESD Caution 6
Typical Performance Characteristics. 7
Typical Applications 11
Applications Information 12
Outline Dimensions 13
Ordering Guide 14
8/03-Rev. B to Rev. C
Changes to OP07E Electrical Specifications 2
Changes to OP07C Electrical Specifications 3
Edits to Ordering Guide 5
Edits to Figure 6 9
Updated Outline Dimensions. 11
3/03-Rev. A to Rev. B
Updated Package Titles Universal
Updated Outline Dimensions. 11
2/02-Rev. 0 to Rev. A
Edits to Features. 1
Edits to Ordering Guide 1
Edits to Pin Connection Drawings 1
Edits to Absolute Maximum Ratings 2
Deleted Electrical Characteristics 2-3
Deleted OP07D Column from Electrical Characteristics. 4-5
Edits to TPCs 7-9
Edits to High-Speed, Low Vos Composite Amplifier 9

OP07

SPECIFICATIONS

OP07E ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT CHARACTERISTICS						
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Input Offset Voltage ${ }^{1}$	Vos			30	75	$\mu \mathrm{V}$
Long-Term Vos Stability ${ }^{2}$	Vos/Time			0.3	1.5	$\mu \mathrm{V} / \mathrm{Month}$
Input Offset Current	los			0.5	3.8	nA
Input Bias Current	I_{B}			± 1.2	± 4.0	nA
Input Noise Voltage	$\mathrm{e}_{\mathrm{n}} \mathrm{p}$-p	0.1 Hz to $10 \mathrm{~Hz}^{3}$		0.35	0.6	$\mu \vee \mathrm{p}-\mathrm{p}$
Input Noise Voltage Density	e_{n}	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$		10.3	18.0	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{fo}_{0}=100 \mathrm{~Hz}^{3}$		10.0	13.0	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{fo}_{\mathrm{o}}=1 \mathrm{kHz}$		9.6	11.0	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Current	$\mathrm{In}_{\mathrm{n}} \mathrm{p}-\mathrm{p}$			14	30	pA p-p
Input Noise Current Density	I_{n}	$\mathrm{f}_{0}=10 \mathrm{~Hz}$		0.32	0.80	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{fo}_{0}=100 \mathrm{~Hz}^{3}$		0.14	0.23	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$		0.12	0.17	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Input Resistance, Differential Mode ${ }^{4}$	RIN		15	50		$\mathrm{M} \Omega$
Input Resistance, Common Mode	Rincm			160		$\mathrm{G} \Omega$
Input Voltage Range	IVR		± 13	± 14		V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{cm}}= \pm 13 \mathrm{~V}$	106	123		dB
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{s}}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		5	20	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	Avo	$\mathrm{RL}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{o}}= \pm 10 \mathrm{~V}$	200	500		V / mV
		$\mathrm{R}_{\mathrm{L}} \geq 500 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V}, \mathrm{~V}_{S}= \pm 3 \mathrm{~V}^{4}$	150	400		V / mV
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$						
Input Offset Voltage ${ }^{1}$	Vos			45	130	$\mu \mathrm{V}$
Voltage Drift Without External Trim ${ }^{4}$	TCV ${ }_{\text {os }}$			0.3	1.3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Voltage Drift with External Trim ${ }^{3}$	TCV ${ }_{\text {osn }}$	$\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega$		0.3	1.3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	los			0.9	5.3	nA
Input Offset Current Drift	TClos			8	35	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}			± 1.5	± 5.5	nA
Input Bias Current Drift	$\mathrm{TCl}_{\mathrm{B}}$			13	35	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Voltage Range	IVR		± 13	± 13.5		V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {cm }}= \pm 13 \mathrm{~V}$	103	123		dB
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{s}}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		7	32	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	Avo	$\mathrm{RL} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{o}}= \pm 10 \mathrm{~V}$	180	450		V / mV
OUTPUT CHARACTERISTICS						
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Output Voltage Swing	Vo	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	± 12.5	± 13.0		V
		$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 12.0	± 12.8		V
		$\mathrm{RL} \geq 1 \mathrm{k} \Omega$	± 10.5	± 12.0		V
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$						
Output Voltage Swing	Vo	$\mathrm{RL} \geq 2 \mathrm{k} \Omega$	± 12	± 12.6		V

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE						
$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$						
Slew Rate	SR	$\mathrm{RL} \geq 2 \mathrm{k} \Omega^{3}$	0.1	0.3		V/ $/ \mathrm{s}$
Closed-Loop Bandwidth	BW	$\mathrm{Avol}^{\text {g }}=1^{5}$	0.4	0.6		MHz
Open-Loop Output Resistance	Ro	$\mathrm{V}_{\mathrm{O}}=0, \mathrm{l}_{0}=0$		60		Ω
Power Consumption	P_{d}	$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$, No load		75	120	mW
		$\mathrm{V}_{\mathrm{s}}= \pm 3 \mathrm{~V}$, No load		4	6	mW
Offset Adjustment Range		$\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega$		± 4		mV

${ }^{1}$ Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.
${ }^{2}$ Long-term input offset voltage stability refers to the averaged trend time of Vos vs. the time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in Vos during the first 30 operating days are typically $2.5 \mu \mathrm{~V}$. Refer to the Typical Performance Characteristics section. Parameter is sample tested.
${ }^{3}$ Sample tested.
${ }^{4}$ Guaranteed by design.
${ }^{5}$ Guaranteed but not tested

OP07C ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT CHARACTERISTICS						
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Input Offset Voltage ${ }^{1}$	Vos			60	150	$\mu \mathrm{V}$
Long-Term Vos Stability ${ }^{2}$	Vos/Time			0.4	2.0	$\mu \mathrm{V} / \mathrm{Month}$
Input Offset Current	los			0.8	6.0	nA
Input Bias Current	I_{B}			± 1.8	± 7.0	nA
Input Noise Voltage	$e_{n} \mathrm{p}$-p	0.1 Hz to $10 \mathrm{~Hz}^{3}$		0.38	0.65	$\mu \mathrm{V}$ p-p
Input Noise Voltage Density	e_{n}	$\mathrm{f}_{\mathrm{o}}=10 \mathrm{~Hz}$		10.5	20.0	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{f}_{\mathrm{o}}=100 \mathrm{~Hz}^{3}$		10.2	13.5	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{fo}_{\mathrm{o}}=1 \mathrm{kHz}$		9.8	11.5	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Current	$I_{n} \mathrm{p}-\mathrm{p}$			15	35	pA p-p
Input Noise Current Density	I_{n}	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$		0.35	0.90	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{fo}_{0}=100 \mathrm{~Hz}^{3}$		0.15	0.27	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{fo}_{\mathrm{o}}=1 \mathrm{kHz}$		0.13	0.18	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Input Resistance, Differential Mode ${ }^{4}$	RIN		8	33		$\mathrm{M} \Omega$
Input Resistance, Common Mode	Rincm			120		$G \Omega$
Input Voltage Range	IVR		± 13	± 14		V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{CM}}= \pm 13 \mathrm{~V}$	100	120		dB
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		7	32	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	Avo	$\mathrm{RL} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{0}= \pm 10 \mathrm{~V}$	120	400		V / mV
		$\mathrm{RL}_{\mathrm{L}} \geq 500 \Omega, \mathrm{~V}_{\mathrm{o}}= \pm 0.5 \mathrm{~V}, \mathrm{~V}_{s}= \pm 3 \mathrm{~V}^{4}$	100	400		V / mV
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$						
Input Offset Voltage ${ }^{1}$	Vos			85	250	$\mu \mathrm{V}$
Voltage Drift Without External Trim ${ }^{4}$	TCVos			0.5	1.8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Voltage Drift with External Trim ${ }^{3}$	TCV ${ }_{\text {osn }}$	$\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega$		0.4	1.6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	los			1.6	8.0	nA
Input Offset Current Drift	TClos			12	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}			± 2.2	± 9.0	nA
Input Bias Current Drift	$\mathrm{TCl}_{\text {B }}$			18	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Voltage Range	IVR		± 13	± 13.5		V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {cM }}= \pm 13 \mathrm{~V}$	97	120		dB
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{s}}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		10	51	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	Avo	$\mathrm{RL}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{o}}= \pm 10 \mathrm{~V}$	100	400		V / mV

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
OUTPUT CHARACTERISTICS						
$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$						
Output Voltage Swing	Vo	$\mathrm{RL} \geq 10 \mathrm{k} \Omega$	± 12.0	± 13.0		V
		$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 11.5	± 12.8		V
		$\mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega$		± 12.0		V
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$						
Output Voltage Swing V_{\circ}		$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 12	± 12.6		V
DYNAMIC PERFORMANCE						
$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$						
Slew Rate	SR	$\mathrm{RL} \geq 2 \mathrm{k} \Omega^{3}$	0.1	0.3		V/ $/ \mathrm{s}$
Closed-Loop Bandwidth	BW	Avol $=1{ }^{5}$	0.4	0.6		MHz
Open-Loop Output Resistance	Ro	$\mathrm{V}_{\mathrm{O}}=0, \mathrm{l}_{0}=0$		60		Ω
Power Consumption	P_{d}	$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$, No load		80	150	mW
		$\mathrm{V}_{\mathrm{s}}= \pm 3 \mathrm{~V}$, No load		4	8	mW
Offset Adjustment Range		$\mathrm{RP}=20 \mathrm{k} \Omega$		± 4		mV

[^0]ABSOLUTE MAXIMUM RATINGS
Table 3.

Parameter	Ratings
Supply Voltage $\left(V_{S}\right)$	$\pm 22 \mathrm{~V}$
Input Voltage ${ }^{1}$	$\pm 22 \mathrm{~V}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\quad S and P Packages	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
OP07E	$150^{\circ} \mathrm{C}$
\quad OP07C	$300^{\circ} \mathrm{C}$
Junction Temperature	
Lead Temperature, Soldering (60 sec)	
For supply voltages less than $\pm 22 \mathrm{~V}$, the absolute maximum input voltage is	
equal to the supply voltage.	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}$	$\boldsymbol{\theta}_{\mathbf{\prime c}}$	Unit
8-Lead PDIP (P-Suffix)	103	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead SOIC_N (S-Suffix)	158	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Open-Loop Gain vs. Temperature

Figure 4. Offset Voltage Change due to Thermal Shock

Figure 5. Warm-Up Drift

Figure 6. Maximum Error vs. Source Resistance

Figure 7. Maximum Error vs. Source Resistance

Figure 8. Input Bias Current vs. Differential Input Voltage

Figure 9. Input Bias Current vs. Temperature

Figure 10. Input Offset Current vs. Temperature

Figure 11. Low Frequency Noise

Figure 12. Total Input Noise Voltage vs. Frequency

Figure 13. Input Wideband Noise vs. Bandwidth, 0.1 Hz to Frequency Indicated

Figure 14. CMRR vs. Frequency

Figure 15. PSRR vs. Frequency

Figure 16. Open-Loop Gain vs. Power Supply Voltage

Figure 17. Open-Loop Frequency Response

Figure 18. Closed-Loop Frequency Response for Various Gain Configurations

Figure 19. Maximum Output Swing vs. Frequency

Figure 20. Maximum Output Voltage vs. Load Resistance

Figure 21. Power Consumption vs. Power Supply

Figure 22. Output Short-Circuit Current vs. Time

Figure 23. Untrimmed Offset Voltage vs. Temperature

Figure 24. Trimmed Offset Voltage vs. Temperature

Figure 25. Offset Voltage Drift vs. Time

TYPICAL APPLICATIONS

Figure 26. Typical Offset Voltage Test Circuit

Figure 27. Typical Low Frequency Noise Circuit

Figure 28. Optional Offset Nulling Circuit

Figure 29. Absolute Value Circuit

NOTES

1. PINOUT SHOWN FOR P PACKAGE

Figure 30. High Speed, Low Vos Composite Amplifier

NOTES

1. PINOUT SHOWN FOR P PACKAGE

Figure 31. Adjustment-Free Precision Summing Amplifier

NOTES

1. PINOUT SHOWN FOR P PACKAGE

Figure 32. High Stability Thermocouple Amplifier

NOTES

1. PINOUT SHOWN FOR P PACKAGE

Figure 33. Precision Absolute-Value Circuit

APPLICATIONS INFORMATION

The OP07 provides stable operation with load capacitance of up to 500 pF and $\pm 10 \mathrm{~V}$ swings; larger capacitances should be decoupled with a 50Ω decoupling resistor.

Stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can degrade drift performance. Therefore, best operation is obtained when both input contacts are maintained at the same temperature, preferably close to the package temperature.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 34. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body S-Suffix (R-8)
Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 35. 8-Lead Plastic Dual-in-Line Package [PDIP]
P-Suffix

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
OP07EPZ	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 -Lead PDIP	N-8 (P-Suffix)
OP07CPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead PDIP	N-8 (P-Suffix)
OP07CSZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8 (S-Suffix)
OP07CSZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8 (S-Suffix)
OP07CSZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead SOIC_N	R-8 (S-Suffix)

${ }^{1} Z=$ RoHS Compliant Part.

Data Sheet	OP07

NOTES

High Precision, Low Noise OPERATIONAL AMPLIFIERS

FEATURES

\author{

- LOW NOISE: $3 n \mathrm{n} / \sqrt{\mathrm{Hz}}$
 - WIDE BANDWIDTH:
 OPA227: $8 \mathrm{MHz}, 2.3 \mathrm{~V} / \mu \mathrm{s}$
 OPA228: 33MHz, 10V/ $\mu \mathrm{s}$
 - SETTLING TIME: $5 \mu \mathrm{~s}$
 (significant improvement over OP-27)
 - HIGH CMRR: 138dB
 - HIGH OPEN-LOOP GAIN: 160dB
 - LOW INPUT BIAS CURRENT: 10nA max
 - LOW OFFSET VOLTAGE: 75 $\mu \mathrm{V}$ max
 - WIDE SUPPLY RANGE: $\pm 2.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
 - OPA227 REPLACES OP-27, LT1007, MAX427
 - OPA228 REPLACES OP-37, LT1037, MAX437
 - SINGLE, DUAL, AND QUAD VERSIONS
}

APPLICATIONS

- DATA ACQUISITION
- TELECOM EQUIPMENT
- GEOPHYSICAL ANALYSIS
- VIBRATION ANALYSIS
- SPECTRAL ANALYSIS
- PROFESSIONAL AUDIO EQUIPMENT
- ACTIVE FILTERS
- POWER SUPPLY CONTROL

DESCRIPTION

The OPA227 and OPA228 series op amps combine low noise and wide bandwidth with high precision to make them the ideal choice for applications requiring both ac and precision dc performance.
The OPA227 is unity-gain stable and features high slew rate $(2.3 \mathrm{~V} / \mu \mathrm{s})$ and wide bandwidth (8 MHz). The OPA228 is optimized for closed-loop gains of 5 or greater, and offers higher speed with a slew rate of $10 \mathrm{~V} / \mu$ s and a bandwidth of 33 MHz .
The OPA227 and OPA228 series op amps are ideal for professional audio equipment. In addition, low quiescent current and low cost make them ideal for portable applications requiring high precision.
The OPA227 and OPA228 series op amps are pin-for-pin replacements for the industry standard OP-27 and OP-37 with substantial improvements across the board. The dual and quad versions are available for space savings and perchannel cost reduction.
The OPA227, OPA228, OPA2227, and OPA2228 are available in DIP-8 and SO-8 packages. The OPA4227 and OPA4228 are available in DIP-14 and SO-14 packages with standard pin configurations. Operation is specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SPICE model available for OPA227 at www.ti.com

DIP-14, SO-14

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^1]
SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

OPA227 Series

At $T_{A}=+25^{\circ} \mathrm{C}$, and $R_{L}=10 \mathrm{k} \Omega$, unless otherwise noted.
Boldface limits apply over the specified temperature range, $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	CONDITION	$\begin{aligned} & \text { OPA227P, U } \\ & \text { OPA2227P, U } \end{aligned}$			OPA227PA, UA OPA2227PA, UA OPA4227PA, UA			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX			
OFFSET VOLTAGE Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ vs Temperature $\begin{gathered} \mathrm{V}_{\mathrm{OS}} \\ \mathrm{dV}_{\mathrm{OS}} / \mathrm{dT} \end{gathered}$ vs Power Supply $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ vs Time Channel Separation (dual, quad)	$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}$ $\begin{gathered} \mathrm{dc} \\ \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \end{gathered}$		$\begin{gathered} \pm 5 \\ \\ \pm 0.1 \\ \pm 0.5 \\ \\ 0.2 \\ 0.2 \\ 110 \end{gathered}$	$\begin{gathered} \pm 75 \\ \pm 100 \\ \pm 0.6 \\ \pm 2 \\ \pm 2 \end{gathered}$		$\begin{gathered} \pm 10 \\ \pm 0.3 \\ * \\ * \\ * \\ * \end{gathered}$	$\begin{gathered} \pm 200 \\ \pm 200 \\ \pm 2 \\ * \\ * \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{mo}$ $\mu \mathrm{V} / \mathrm{V}$ dB		
INPUT BIAS CURRENT Input Bias Current $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ Input Offset Current $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$			$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 10 \\ & \pm 10 \end{aligned}$		* *	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$		
NOISE Input Voltage Noise, $f=0.1 \mathrm{~Hz}$ to 10 Hz $\text { Input Voltage Noise Density, } \begin{aligned} f & =10 \mathrm{~Hz} \quad e_{n} \\ f & =100 \mathrm{~Hz} \\ f & =1 \mathrm{kHz} \end{aligned}$ Current Noise Density, $f=1 \mathrm{kHz}$			90 15 3.5 3 3 0.4			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$ *		nVp-p nVrms $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$		
INPUT VOLTAGE RANGE Common-Mode Voltage Range $\quad \mathrm{V}_{\mathrm{CM}}$ Common-Mode Rejection CMRR $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CM}}=(\mathrm{V}-)+2 \mathrm{~V}$ to $(\mathrm{V}+)-2 \mathrm{~V}$	$\begin{gathered} (\mathrm{V}-)+2 \\ 120 \\ 120 \end{gathered}$	138	(V+)-2	*	*	*	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$		
INPUT IMPEDANCE Differential Common-Mode	$\mathrm{V}_{\mathrm{CM}}=(\mathrm{V}-)+2 \mathrm{~V}$ to $(\mathrm{V}+)-2 \mathrm{~V}$		$\begin{gathered} 10^{7}\| \| 12 \\ 10^{9}\| \| 3 \end{gathered}$			$\begin{aligned} & * \\ & * \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$		
OPEN-LOOP GAIN Open-Loop Voltage Gain $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} V_{O}=(\mathrm{V}-)+2 \mathrm{~V} \text { to }(\mathrm{V}+)-2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ \mathrm{~V}_{\mathrm{O}}=(\mathrm{V}-)+3.5 \mathrm{~V} \text { to }(\mathrm{V}+)-3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \end{gathered}$	$\begin{aligned} & 132 \\ & 132 \\ & 132 \\ & 132 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$		$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	* *		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$		
FREQUENCY RESPONSE Gain Bandwidth Product Slew Rate Settling Time: 0.1\% 0.01\% Overload Recovery Time Total Harmonic Distortion + Noise THD+N	$\begin{gathered} G=1,10 \mathrm{~V} \text { Step, } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{G}=1,10 \mathrm{~V} \text { Step, } C_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IN}} \cdot G=\mathrm{V}_{\mathrm{S}} \\ \mathrm{f}=1 \mathrm{kHz}, \mathrm{G}=1, \mathrm{~V}_{\mathrm{O}}=3.5 \mathrm{Vrms} \end{gathered}$		$\begin{gathered} 8 \\ 2.3 \\ 5 \\ 5.6 \\ 1.3 \\ 0.00005 \end{gathered}$			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		MHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{s}$ \%		
OUTPUT Voltage Output $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$ Short-Circuit Current Capacitive Load Drive	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	$\begin{gathered} (\mathrm{V}-)+2 \\ (\mathrm{~V}-)+2 \\ (\mathrm{~V}-)+3.5 \\ (\mathrm{~V}-)+3.5 \end{gathered}$ See	± 45 Typical	$\begin{gathered} (\mathrm{V}+)-2 \\ (\mathrm{~V}+)-2 \\ (\mathrm{~V}+)-3.5 \\ (\mathrm{~V}+)-3.5 \end{gathered}$ urve	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$		
POWER SUPPLY Specified Voltage Range Operating Voltage Range Quiescent Current (per amplifier) $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=0 \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 2.5 \end{gathered}$	± 3.7	$\begin{aligned} & \pm 15 \\ & \pm 18 \\ & \pm 3.8 \\ & \pm 4.2 \end{aligned}$	$\begin{aligned} & * \\ & * \end{aligned}$	*	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$		
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SO-8 Surface Mount DIP-8 DIP-14 SO-14 Surface Mount		$\begin{aligned} & -40 \\ & -55 \\ & -65 \end{aligned}$	$\begin{gathered} 150 \\ 100 \\ 80 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} +85 \\ +125 \\ +150 \end{gathered}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$		

[^2]
SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

OPA228 Series

At $T_{A}=+25^{\circ} \mathrm{C}$, and $R_{L}=10 \mathrm{k} \Omega$, unless otherwise noted
Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	CONDITION	$\begin{aligned} & \text { OPA228P, U } \\ & \text { OPA2228P, U } \end{aligned}$			OPA228PA, UA OPA2228PA, UA OPA4228PA, UA			UNITS				
		MIN	TYP	MAX	MIN	TYP	MAX					
OFFSET VOLTAGE Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ vs Temperature vs Power Supply $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ vs Time Channel Separation (dual, quad)	$\begin{gathered} V_{S}= \pm 2.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ \mathrm{dc} \\ \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \end{gathered}$		$\begin{gathered} \pm 5 \\ \\ \pm 0.1 \\ \pm 0.5 \\ \\ 0.2 \\ 0.2 \\ 110 \end{gathered}$	$\begin{gathered} \pm 75 \\ \pm 100 \\ \pm 0.6 \\ \pm 2 \\ \pm 2 \end{gathered}$		$\begin{gathered} \pm 10 \\ \pm 0.3 \\ * \\ * \\ * \\ * \\ * \end{gathered}$	$\begin{gathered} \pm 200 \\ \pm 200 \\ \pm 2 \\ * \\ * \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{mo} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{~dB} \end{gathered}$				
INPUT BIAS CURRENT Input Bias Current $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ Input Offset Current $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$			$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 10 \\ & \pm 10 \end{aligned}$			$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$				
NOISE Input Voltage Noise, $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz Current Noise Density, $f=1 \mathrm{kHz}$			$\begin{gathered} 90 \\ 15 \\ 3.5 \\ 3 \\ 3 \\ 0.4 \end{gathered}$			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		nVp-p nVrms $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$				
INPUT VOLTAGE RANGE Common-Mode Voltage Range $\quad \mathrm{V}_{\mathrm{CM}}$ Common-Mode Rejection CMRR $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CM}}=(\mathrm{V}-)+2 \mathrm{~V}$ to $(\mathrm{V}+)-2 \mathrm{~V}$	$\begin{gathered} (\mathrm{V}-)+2 \\ 120 \\ 120 \end{gathered}$	138	(V+)-2	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	*	*	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$				
INPUT IMPEDANCE Differential Common-Mode	$\mathrm{V}_{\mathrm{CM}}=(\mathrm{V}-)+2 \mathrm{~V}$ to ($\mathrm{V}+$)-2V		$\begin{gathered} 10^{7} \\| 12 \\ 10^{9} \\| 3 \end{gathered}$			$\begin{aligned} & \text { * } \\ & \text { * } \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$				
OPEN-LOOP GAIN Open-Loop Voltage Gain $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} V_{O}=(V-)+2 V \text { to }\left(V_{+}\right)-2 V, R_{L}=10 \mathrm{k} \Omega \\ V_{O}=(\mathrm{V}-)+3.5 \mathrm{~V} \text { to }(\mathrm{V}+)-3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \end{gathered}$	$\begin{aligned} & 132 \\ & 132 \\ & 132 \\ & 132 \\ & \hline \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$		$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$				
FREQUENCY RESPONSE Minimum Closed-Loop Gain Gain Bandwidth Product Slew Rate Setting Time: 0.1\% 0.01\% Overload Recovery Time Total Harmonic Distortion + Noise THD+N	$\begin{gathered} G=5,10 \mathrm{~V} \text { Step, } C_{L}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{F}}=12 \mathrm{pF} \\ \mathrm{G}=5,10 \mathrm{~V} \text { Step, } C_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{F}}=12 \mathrm{pF} \\ V_{I N} \cdot G=V_{S} \\ f=1 \mathrm{kHz}, G=5, V_{O}=3.5 \mathrm{Vrms} \end{gathered}$		5 33 11 1.5 2 0.6 0.00005			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		V / V MHz $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\%$				
```OUTPUT Voltage Output \(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) Short-Circuit Current Capacitive Load Drive```	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	$\begin{array}{r} (\mathrm{V}-)+2 \\ (\mathrm{~V}-)+2 \\ (\mathrm{~V}-)+3.5 \\ (\mathrm{~V}-)+3.5 \\ \\ \text { See } \end{array}$	$\pm 45$   Typical	$\begin{gathered} (V+)-2 \\ (V+)-2 \\ (V+)-3.5 \\ (V+)-3.5 \end{gathered}$   urve	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$				
POWER SUPPLY   Specified Voltage Range Operating Voltage Range Quiescent Current (per amplifier) $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=0 \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 2.5 \end{gathered}$	$\pm 3.7$	$\begin{aligned} & \pm 15 \\ & \pm 18 \\ & \pm 3.8 \\ & \pm 4.2 \end{aligned}$	$\begin{aligned} & * \\ & * \end{aligned}$	*	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$				
TEMPERATURE RANGE   Specified Range   Operating Range   Storage Range   Thermal Resistance   SO-8 Surface Mount   DIP-8   DIP-14   SO-14 Surface Mount		$\begin{aligned} & -40 \\ & -55 \\ & -65 \end{aligned}$	$\begin{gathered} 150 \\ 100 \\ 80 \\ 100 \end{gathered}$	$\begin{aligned} & +85 \\ & +125 \\ & +150 \end{aligned}$	$\begin{aligned} & * \\ & \text { * } \\ & \text { * } \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	*	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$				

[^3]
## TYPICAL PERFORMANCE CURVES

At $T_{A}=+25^{\circ} \mathrm{C}, R_{L}=10 \mathrm{k} \Omega$, and $V_{S}= \pm 15 \mathrm{~V}$, unless otherwise noted.






## APPLICATIONS INFORMATION

The OPA227 and OPA228 series are precision op amps with very low noise. The OPA227 series is unity-gain stable with a slew rate of $2.3 \mathrm{~V} / \mu \mathrm{s}$ and 8 MHz bandwidth. The OPA 228 series is optimized for higher-speed applications with gains of 5 or greater, featuring a slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ and 33 MHz bandwidth. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins. In most cases, $0.1 \mu \mathrm{~F}$ capacitors are adequate.

## OFFSET VOLTAGE AND DRIFT

The OPA227 and OPA228 series have very low offset voltage and drift. To achieve highest dc precision, circuit layout and mechanical conditions should be optimized. Connections of dissimilar metals can generate thermal potentials at the op amp inputs which can degrade the offset voltage and drift. These thermocouple effects can exceed the inherent drift of the amplifier and ultimately degrade its performance. The thermal potentials can be made to cancel by assuring that they are equal at both input terminals. In addition:

- Keep thermal mass of the connections made to the two input terminals similar.
- Locate heat sources as far as possible from the critical input circuitry.
- Shield op amp and input circuitry from air currents such as those created by cooling fans.


## OPERATING VOLTAGE

OPA227 and OPA228 series op amps operate from $\pm 2.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies with excellent performance. Unlike most op amps which are specified at only one supply voltage, the OPA227 series is specified for real-world applications; a single set of specifications applies over the $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ supply range. Specifications are assured for applications between $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ power supplies. Some applications do not require equal positive and negative output voltage swing. Power supply voltages do not need to be equal. The OPA227 and OPA228 series can operate with as little as 5 V between the supplies and with up to 36 V between the supplies. For example, the positive supply could be set to 25 V with the negative supply at -5 V or vice-versa. In addition, key parameters are assured over the specified temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Parameters which vary significantly with operating voltage or temperature are shown in the Typical Performance Curves.

## OFFSET VOLTAGE ADJUSTMENT

The OPA227 and OPA228 series are laser-trimmed for very low offset and drift so most applications will not require external adjustment. However, the OPA227 and OPA228 (single versions) provide offset voltage trim connections on pins 1 and 8 . Offset voltage can be adjusted by connecting a potentiometer as shown in Figure 1. This adjustment should be used only to null the offset of the op


FIGURE 1. OPA227 Offset Voltage Trim Circuit.
amp. This adjustment should not be used to compensate for offsets created elsewhere in the system since this can introduce additional temperature drift.

## INPUT PROTECTION

Back-to-back diodes (see Figure 2) are used for input protection on the OPA227 and OPA228. Exceeding the turn-on threshold of these diodes, as in a pulse condition, can cause current to flow through the input protection diodes due to the amplifier's finite slew rate. Without external current-limiting resistors, the input devices can be destroyed. Sources of high input current can cause subtle damage to the amplifier. Although the unit may still be functional, important parameters such as input offset voltage, drift, and noise may shift.


FIGURE 2. Pulsed Operation.
When using the OPA227 as a unity-gain buffer (follower), the input current should be limited to 20 mA . This can be accomplished by inserting a feedback resistor or a resistor in series with the source. Sufficient resistor size can be calculated:

$$
\mathrm{R}_{\mathrm{X}}=\mathrm{V}_{\mathrm{S}} / 20 \mathrm{~mA}-\mathrm{R}_{\mathrm{SOURCE}}
$$

where $R_{X}$ is either in series with the source or inserted in the feedback path. For example, for a 10 V pulse $\left(\mathrm{V}_{\mathrm{S}}=\right.$ 10 V ), total loop resistance must be $500 \Omega$. If the source impedance is large enough to sufficiently limit the current on its own, no additional resistors are needed. The size of any external resistors must be carefully chosen since they will increase noise. See the Noise Performance section of this data sheet for further information on noise calculation. Figure 2 shows an example implementing a currentlimiting feedback resistor.

## INPUT BIAS CURRENT CANCELLATION

The input bias current of the OPA227 and OPA228 series is internally compensated with an equal and opposite cancellation current. The resulting input bias current is the difference between with input bias current and the cancellation current. The residual input bias current can be positive or negative.
When the bias current is cancelled in this manner, the input bias current and input offset current are approximately equal. A resistor added to cancel the effect of the input bias current (as shown in Figure 3) may actually increase offset and noise and is therefore not recommended.


FIGURE 3. Input Bias Current Cancellation.

## NOISE PERFORMANCE

Figure 4 shows total circuit noise for varying source impedances with the op amp in a unity-gain configuration (no feedback resistor network, therefore no additional noise contributions). Two different op amps are shown with total circuit noise calculated. The OPA227 has very low voltage noise, making it ideal for low source impedances (less than $20 \mathrm{k} \Omega$ ). A similar precision op amp, the OPA277, has somewhat higher voltage noise but lower current noise. It provides excellent noise performance at moderate source impedance ( $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ ). Above $100 \mathrm{k} \Omega$, a FET-input op amp such as the OPA132 (very low current noise) may provide improved performance. The equation is shown for the calculation of the total circuit noise. Note that $e_{n}=$ voltage noise, $i_{n}=$ current noise, $\mathrm{R}_{\mathrm{S}}=$ source impedance, $\mathrm{k}=$ Boltzmann's constant $=$ $1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$ and T is temperature in K . For more details on calculating noise, see the insert titled "Basic Noise Calculations."


FIGURE 4. Noise Performance of the OPA227 in UnityGain Buffer Configuration.

## BASIC NOISE CALCULATIONS

Design of low noise op amp circuits requires careful consideration of a variety of possible noise contributors: noise from the signal source, noise generated in the op amp, and noise from the feedback network resistors. The total noise of the circuit is the root-sum-square combination of all noise components.
The resistive portion of the source impedance produces thermal noise proportional to the square root of the resistance. This function is shown plotted in Figure 4. Since the source impedance is usually fixed, select the op amp and the feedback resistors to minimize their contribution to the total noise.
Figure 4 shows total noise for varying source impedances with the op amp in a unity-gain configuration (no feedback resistor network and therefore no additional noise contributions). The operational amplifier itself contributes both a voltage noise component and a current
noise component. The voltage noise is commonly modeled as a time-varying component of the offset voltage. The current noise is modeled as the time-varying component of the input bias current and reacts with the source resistance to create a voltage component of noise. Consequently, the lowest noise op amp for a given application depends on the source impedance. For low source impedance, current noise is negligible and voltage noise generally dominates. For high source impedance, current noise may dominate.
Figure 5 shows both inverting and noninverting op amp circuit configurations with gain. In circuit configurations with gain, the feedback network resistors also contribute noise. The current noise of the op amp reacts with the feedback resistors to create additional noise components. The feedback resistor values can generally be chosen to make these noise sources negligible. The equations for total noise are shown for both configurations.

## Noise in Noninverting Gain Configuration



Noise at the output:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{O}}^{2}=\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)^{2} \mathrm{e}_{\mathrm{n}}^{2}+\mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}+\left(\mathrm{i}_{\mathrm{n}} \mathrm{R}_{2}\right)^{2}+\mathrm{e}_{\mathrm{S}}^{2}+\left(\mathrm{i}_{\mathrm{n}} \mathrm{R}_{\mathrm{S}}\right)^{2}\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)^{2} \\
& \text { Where } \mathrm{e}_{\mathrm{S}}=\sqrt{4 \mathrm{kTR}_{\mathrm{S}}} \cdot\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)=\text { thermal noise of } \mathrm{R}_{\mathrm{S}} \\
& \mathrm{e}_{1}=\sqrt{4 \mathrm{kTR}_{1}} \cdot\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)=\text { thermal noise of } \mathrm{R}_{1} \\
& \mathrm{e}_{2}=\sqrt{4 \mathrm{kTR}_{2}} \quad=\text { thermal noise of } \mathrm{R}_{2}
\end{aligned}
$$

## Noise in Inverting Gain Configuration



Noise at the output:

$$
E_{O}^{2}=\left(1+\frac{R_{2}}{R_{1}+R_{S}}\right)^{2} e_{n}^{2}+e_{1}^{2}+e_{2}^{2}+\left(i_{n} R_{2}\right)^{2}+e_{S}^{2}
$$

Where $\mathrm{e}_{\mathrm{S}}=\sqrt{4 \mathrm{kTR}_{\mathrm{S}}} \cdot\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{\mathrm{S}}}\right)=$ thermal noise of $\mathrm{R}_{\mathrm{S}}$

$$
\begin{array}{ll}
\mathrm{e}_{1}=\sqrt{4 \mathrm{kTR}_{1}} \cdot\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{\mathrm{S}}}\right) & =\text { thermal noise of } \mathrm{R}_{1} \\
\mathrm{e}_{2}=\sqrt{4 \mathrm{kTR}_{2}} \quad & =\text { thermal noise of } \mathrm{R}_{2}
\end{array}
$$

For the OPA227 and OPA228 series op amps at $1 \mathrm{kHz}, \mathrm{e}_{\mathrm{n}}=3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and $\mathrm{i}_{\mathrm{n}}=0.4 \mathrm{pA} / \sqrt{\mathrm{Hz}}$.

FIGURE 5. Noise Calculation in Gain Configurations.


FIGURE 6. 0.1 Hz to 10 Hz Bandpass Filter Used to Test Wideband Noise of the OPA227 and OPA228 Series.


FIGURE 7. Noise Test Circuit.

Figure 6 shows the 0.1 Hz 10 Hz bandpass filter used to test the noise of the OPA227 and OPA228. The filter circuit was designed using Texas Instruments' FilterPro software (available at www.ti.com). Figure 7 shows the configuration of the OPA227 and OPA228 for noise testing.

## USING THE OPA228 IN LOW GAINS

The OPA228 family is intended for applications with signal gains of 5 or greater, but it is possible to take advantage of their high speed in lower gains. Without external compensation, the OPA228 has sufficient phase margin to maintain stability in unity gain with purely resistive loads. However, the addition of load capacitance can reduce the phase margin and destabilize the op amp.
A variety of compensation techniques have been evaluated specifically for use with the OPA228. The recommended configuration consists of an additional capacitor ( $\mathrm{C}_{\mathrm{F}}$ ) in parallel with the feedback resistance, as shown in Figures 8 and 11. This feedback capacitor serves two purposes in compensating the circuit. The op amp's input capacitance and the feedback resistors interact to cause phase shift that can result in instability. $\mathrm{C}_{\mathrm{F}}$ compensates the input capacitance, minimizing peaking. Additionally, at high frequencies, the closed-loop gain of the amplifier is strongly influenced by the ratio of the input capacitance and the feedback capacitor. Thus, $\mathrm{C}_{\mathrm{F}}$ can be selected to yield good stability while maintaining high speed.

Without external compensation, the noise specification of the OPA228 is the same as that for the OPA227 in gains of 5 or greater. With the additional external compensation, the output noise of the of the OPA228 will be higher. The amount of noise increase is directly related to the increase in high frequency closed-loop gain established by the $\mathrm{C}_{\mathrm{IN}}$ / $\mathrm{C}_{\mathrm{F}}$ ratio.

Figures 8 and 11 show the recommended circuit for gains of +2 and -2 , respectively. The figures suggest approximate

FIGURE 8. Compensation of the OPA228 for $\mathrm{G}=+2$.


FIGURE 9. Large-Signal Step Response, $\mathrm{G}=+2, \mathrm{C}_{\text {LOAD }}=$ 100 pF , Input Signal $=5 \mathrm{~V}$ p-p.


FIGURE 10. Small-Signal Step Response, $G=+2, \mathrm{C}_{\text {LOAD }}=$ 100 pF , Input Signal $=50 \mathrm{mV}$ p-p.
values for $\mathrm{C}_{\mathrm{F}}$. Because compensation is highly dependent on circuit design, board layout, and load conditions, $\mathrm{C}_{\mathrm{F}}$ should be optimized experimentally for best results. Figures 9 and 10 show the large- and small-signal step responses for the $G=+2$ configuration with 100 pF load capacitance. Figures 12 and 13 show the large- and smallsignal step responses for the $G=-2$ configuration with 100 pF load capacitance.


FIGURE 11. Compensation for OPA228 for $\mathrm{G}=-2$.


FIGURE 12. Large-Signal Step Response, $G=-2, C_{\text {LOAD }}=$ 100 pF , Input Signal $=5 \mathrm{Vp}-\mathrm{p}$.


FIGURE 13. Small-Signal Step Response, $G=-2, C_{\text {LOAD }}=$ 100 pF , Input Signal $=50 \mathrm{mV}$ p-p.


FIGURE 14. Three-Pole, 20kHz Low Pass, 0.5dB Chebyshev Filter.


FIGURE 15. Long-Wavelength Infrared Detector Amplifier.


FIGURE 16. High Performance Synchronous Demodulator.


FIGURE 17. Headphone Amplifier.


FIGURE 18. Three-Band ActiveTone Control (bass, midrange and treble).

## PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/ Ball Finish	MSL Peak Temp ${ }^{(3)}$	Samples   (Requires Login)
OPA2227P	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	Add to cart
OPA2227PA	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	Add to cart
OPA2227PAG4	ACTIVE	PDIP	P	8	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	N / A for Pkg Type	Add to cart
OPA2227PG4	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	Add to cart
OPA2227U	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2227U/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2227U/2K5G4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2227UA	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2227UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2227UA/2K5E4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2227UAE4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2227UAG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2227UE4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2227UG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2228P	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	Add to cart
OPA2228PA	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	Add to cart
OPA2228PAG4	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	Add to cart


Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/ Ball Finish	MSL Peak Temp ${ }^{(3)}$	Samples   (Requires Login)
OPA2228PG4	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N/ A for Pkg Type	Add to cart
OPA2228U	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2228U/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2228U/2K5E4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2228UA	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2228UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2228UA/2K5E4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2228UAE4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA2228UE4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA227P	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	Add to cart
OPA227PA	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N/ A for Pkg Type	Add to cart
OPA227PAG4	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	Add to cart
OPA227PG4	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	Add to cart
OPA227U	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA227U/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA227U/2K5E4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA227UA	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA227UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR	Add to cart


Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/ Ball Finish	MSL Peak Temp ${ }^{(3)}$	Samples   (Requires Login)
OPA227UA/2K5G4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA227UAG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA227UE4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA228P	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N/ A for Pkg Type	Add to cart
OPA228PA	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	Add to cart
OPA228PAG4	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	N/ A for Pkg Type	Add to cart
OPA228PG4	ACTIVE	PDIP	P	8	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	N/ A for Pkg Type	Add to cart
OPA228U	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA228UA	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA228UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA228UA/2K5E4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA228UAG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA228UG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA4227PA	ACTIVE	PDIP	N	14	25	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	Add to cart
OPA4227PAG4	ACTIVE	PDIP	N	14	25	Green (RoHS \& no Sb/Br)	CU NIPDAU	N / A for Pkg Type	Add to cart
OPA4227UA	ACTIVE	SOIC	D	14	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA4227UA/2K5	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA4227UA/2K5G4	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR	Add to cart

INSTRUMENTS

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/ Ball Finish	MSL Peak Temp ${ }^{(3)}$	Samples   (Requires Login)
OPA4227UAG4	ACTIVE	SOIC	D	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA4228PA	ACTIVE	PDIP	N	14	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	N/ A for Pkg Type	Add to cart
OPA4228PAG4	ACTIVE	PDIP	N	14	25	Green (RoHS \& no Sb/Br)	CU NIPDAU	N/ A for Pkg Type	Add to cart
OPA4228UA	ACTIVE	SOIC	D	14	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA4228UA/2K5	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA4228UA/2K5G4	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	Add to cart
OPA4228UAE4	ACTIVE	SOIC	D	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR	Add to cart

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed $0.1 \%$ by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

- Short-Circuit Protection
- Offset-Voltage Null Capability
- Large Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Designed to Be Interchangeable With Fairchild $\mu$ A741


## description

The $\mu \mathrm{A} 741$ is a general-purpose operational amplifier featuring offset-voltage null capability.

The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.
The $\mu \mathrm{A} 741 \mathrm{C}$ is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The $\mu \mathrm{A} 7411$ is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The $\mu \mathrm{A} 741 \mathrm{M}$ is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

## symbol



$\mu$ A741M...JG PACKAGE
$\mu A 741 C, \mu A 7411 . .$. D, P, OR PW PACKAGE (TOP VIEW)


MA741M...U PACKAGE (TOP VIEW)

$\mu A 741 M .$. FK PACKAGE (TOP VIEW)


NC - No internal connection

AVAILABLE OPTIONS

T $_{\text {A }}$	PACKAGED DEVICES							
	SMALL   OUTLINE   (D)	CHIP   CARRIER   (FK)	CERAMIC   DIP   (J)	CERAMIC   DIP   (JG)	PLASTIC   DIP   (P)	TSSOP   (PW)	FLAT   PACK   (U)	FORM   (Y)
	$\mu \mathrm{A} 741 \mathrm{CD}$				$\mu \mathrm{A} 741 \mathrm{CP}$	$\mu \mathrm{A} 741 \mathrm{CPW}$		$\mu \mathrm{A} 741 \mathrm{Y}$
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$\mu \mathrm{A} 741 \mathrm{ID}$				$\mu \mathrm{A} 741 \mathrm{IP}$			
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$\mu \mathrm{A} 741 \mathrm{MFK}$	$\mu \mathrm{A} 741 \mathrm{MJ}$	$\mu \mathrm{A} 741 \mathrm{MJG}$			$\mu \mathrm{A} 741 \mathrm{MU}$	

The D package is available taped and reeled. Add the suffix $R$ (e.g., $\mu A 741 C D R$ ).
schematic


## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

		$\mu$ A741C	$\mu$ A741I	$\mu \mathrm{A} 441 \mathrm{M}$	UNIT
Supply voltage, $\mathrm{V}_{\mathrm{CC}+}$ (see Note 1)		18	22	22	V
Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ - (see Note 1)		-18	-22	-22	V
Differential input voltage, $\mathrm{V}_{\text {ID }}$ (see Note 2)		$\pm 15$	$\pm 30$	$\pm 30$	V
Input voltage, $\mathrm{V}_{\text {I }}$ any input (see Notes 1 and 3)		$\pm 15$	$\pm 15$	$\pm 15$	V
Voltage between offset null (either OFFSET N1 or OFFSET N2) and $\mathrm{V}_{\text {CC }}$ -		$\pm 15$	$\pm 0.5$	$\pm 0.5$	V
Duration of output short circuit (see Note 4)		unlimited	unlimited	unlimited	
Continuous total power dissipation		See Dissipation Rating Table			
Operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}$		0 to 70	-40 to 85	-55 to 125	${ }^{\circ} \mathrm{C}$
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	${ }^{\circ} \mathrm{C}$
Case temperature for 60 seconds	FK package			260	${ }^{\circ} \mathrm{C}$
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J, JG, or U package			300	${ }^{\circ} \mathrm{C}$
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, P, or PW package	260	260		${ }^{\circ} \mathrm{C}$

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{CC}}-$.
2. Differential voltages are at $\mathrm{IN}+$ with respect to $\mathrm{IN}-$.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V , whichever is less.
4. The output may be shorted to ground or either power supply. For the $\mu \mathrm{A} 741 \mathrm{M}$ only, the unlimited duration of the short circuit applies at (or below) $125^{\circ} \mathrm{C}$ case temperature or $75^{\circ} \mathrm{C}$ free-air temperature.

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$   POWER RATING	DERATING FACTOR	DERATE ABOVE TA	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$   POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$   POWER RATING	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$   POWER RATING
D	500 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$64^{\circ} \mathrm{C}$	464 mW	377 mW	N/A
FK	500 mW	11.0 mW/ ${ }^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$	500 mW	500 mW	275 mW
$J$	500 mW	11.0 mW/ ${ }^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$	500 mW	500 mW	275 mW
JG	500 mW	$8.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	500 mW	500 mW	210 mW
P	500 mW	N/A	N/A	500 mW	500 mW	N/A
PW	525 mW	$4.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	336 mW	N/A	N/A
U	500 mW	$5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$57^{\circ} \mathrm{C}$	432 mW	351 mW	135 mW

# $\mu A 741, \mu \mathrm{~A} 741 \mathrm{Y}$ GENERAL-PURPOSE OPERATIONAL AMPLIFIERS 

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC} \pm}= \pm 15 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$	$\mu \mathrm{A} 41 \mathrm{C}$			$\mu \mathrm{A} 741 \mathrm{l}, \mu \mathrm{A} 741 \mathrm{M}$			UNIT	
		MIN		TYP	MAX	MIN	TYP	MAX			
VIO	Input offset voltage		$\mathrm{V}_{\mathrm{O}}=0$	$25^{\circ} \mathrm{C}$		1	6		1	5	mV
		Full range				7.5			6		
$\Delta \mathrm{V}_{\text {IO }}($ adj $)$	Offset voltage adjust range	$\mathrm{V}_{\mathrm{O}}=0$	$25^{\circ} \mathrm{C}$		$\pm 15$			$\pm 15$		mV	
${ }_{1} \mathrm{O}$	Input offset current	$\mathrm{V}_{\mathrm{O}}=0$	$25^{\circ} \mathrm{C}$		20	200		20	200	nA	
			Full range			300			500		
${ }^{\text {IIB }}$	Input bias current	$\mathrm{V}_{\mathrm{O}}=0$	$25^{\circ} \mathrm{C}$		80	500		80	500	nA	
			Full range			800			1500		
VICR	Common-mode input voltage range		$25^{\circ} \mathrm{C}$	$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V	
			Full range	$\pm 12$			$\pm 12$				
VOM	Maximum peak output voltage swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	$\pm 12$	$\pm 14$		$\pm 12$	$\pm 14$		V	
		$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	Full range	$\pm 12$			$\pm 12$				
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	$\pm 10$	$\pm 13$		$\pm 10$	$\pm 13$			
		$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	Full range	$\pm 10$			$\pm 10$				
AVD	Large-signal differential voltage amplification	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	20	200		50	200		V/mV	
		$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	Full range	15			25				
$\mathrm{r}_{\mathrm{i}}$	Input resistance		$25^{\circ} \mathrm{C}$	0.3	2		0.3	2		$\mathrm{M} \Omega$	
$\mathrm{r}_{0}$	Output resistance	$\mathrm{V}_{\mathrm{O}}=0, \quad$ See Note 5	$25^{\circ} \mathrm{C}$		75			75		$\Omega$	
$\mathrm{C}_{\mathrm{i}}$	Input capacitance		$25^{\circ} \mathrm{C}$		1.4			1.4		pF	
CMRR	Common-mode rejection ratio	$V_{\text {IC }}=\mathrm{V}_{\text {ICR }} \mathrm{min}$	$25^{\circ} \mathrm{C}$	70	90		70	90		dB	
			Full range	70			70				
kSVS	Supply voltage sensitivity ( $\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{V}_{\mathrm{CC}}$ )	$\mathrm{V}_{\mathrm{CC}}= \pm 9 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$	
			Full range			150			150		
los	Short-circuit output current		$25^{\circ} \mathrm{C}$		$\pm 25$	$\pm 40$		$\pm 25$	$\pm 40$	mA	
ICC	Supply current	$\mathrm{V}_{\mathrm{O}}=0, \quad$ No load	$25^{\circ} \mathrm{C}$		1.7	2.8		1.7	2.8	mA	
			Full range			3.3			3.3		
PD	Total power dissipation	$\mathrm{V}_{\mathrm{O}}=0, \quad$ No load	$25^{\circ} \mathrm{C}$		50	85		50	85	mW	
			Full range			100			100		

$\dagger$ All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for the $\mu \mathrm{A} 741 \mathrm{C}$ is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, the $\mu \mathrm{A} 741 \mathrm{I}$ is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and the $\mu \mathrm{A} 741 \mathrm{M}$ is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.
operating characteristics, $\mathrm{V}_{\mathrm{CC} \pm}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		$\mu \mathrm{A} 741 \mathrm{C}$			$\mu$ A7411, $\mu$ A741M			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX					
$\mathrm{tr}_{r}$	Rise time			$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=20 \mathrm{mV}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \end{aligned}$	$R_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, }$   See Figure 1	0.3			0.3			$\mu \mathrm{s}$
	Overshoot factor	5\%				5\%						
SR	Slew rate at unity gain	$\begin{aligned} & V_{I}=10 \mathrm{~V}, \\ & C_{L}=100 \mathrm{pF}, \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, }$   See Figure 1		0.5			0.5			V/us	

## electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC} \pm}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\mu \mathrm{A} 41 \mathrm{Y}$			UNIT		
		MIN	TYP	MAX					
$\mathrm{V}_{10}$	Input offset voltage			$\mathrm{V}_{\mathrm{O}}=0$			1	6	mV
$\Delta \mathrm{V}_{\text {IO }}($ adj $)$	Offset voltage adjust range	$\mathrm{V}_{\mathrm{O}}=0$			$\pm 15$		mV		
${ }_{1} \mathrm{O}$	Input offset current	$\mathrm{V}_{\mathrm{O}}=0$			20	200	nA		
IIB	Input bias current	$\mathrm{V}_{\mathrm{O}}=0$			80	500	nA		
VICR	Common-mode input voltage range			$\pm 12$	$\pm 13$		V		
VOM	Maximum peak output voltage swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$\pm 12$	$\pm 14$		V		
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		$\pm 10$	$\pm 13$				
AVD	Large-signal differential voltage amplification	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$		20	200		$\mathrm{V} / \mathrm{mV}$		
$\mathrm{r}_{\mathrm{i}}$	Input resistance			0.3	2		$\mathrm{M} \Omega$		
$\mathrm{r}_{0}$	Output resistance	$\mathrm{V}_{\mathrm{O}}=0$,	See Note 5		75		$\Omega$		
$\mathrm{C}_{\mathrm{i}}$	Input capacitance				1.4		pF		
CMRR	Common-mode rejection ratio	$\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {I }}$	min	70	90		dB		
kSVS	Supply voltage sensitivity ( $\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{V}_{\mathrm{CC}}$ )	$\mathrm{V}_{\mathrm{CC}}= \pm$	$\mathrm{to} \pm 15 \mathrm{~V}$		30	150	$\mu \mathrm{V} / \mathrm{V}$		
los	Short-circuit output current				$\pm 25$	$\pm 40$	mA		
ICC	Supply current	$\mathrm{V}_{\mathrm{O}}=0$,	No load		1.7	2.8	mA		
$\mathrm{P}_{\mathrm{D}}$	Total power dissipation	$\mathrm{V}_{\mathrm{O}}=0$,	No load		50	85	mW		

$\dagger$ All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.
NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.
operating characteristics, $\mathrm{V}_{\mathrm{C}} \pm= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		$\mu \mathrm{A} 41 \mathrm{Y}$			UNIT		
		MIN	TYP	MAX					
$\mathrm{tr}_{r}$	Rise time			$\begin{array}{\|ll} V_{I}=20 \mathrm{mV}, & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, & \text { See Figure } 1 \end{array}$			0.3		$\mu \mathrm{s}$
	Overshoot factor		5\%						
SR	Slew rate at unity gain	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, }$   See Figure 1		0.5		V/us		

## PARAMETER MEASUREMENT INFORMATION



Figure 1. Rise Time, Overshoot, and Slew Rate

## APPLICATION INFORMATION

Figure 2 shows a diagram for an input offset voltage null circuit.


Figure 2. Input Offset Voltage Null Circuit

## TYPICAL CHARACTERISTICS $\dagger$




Figure 5
$\dagger$ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

# $\mu \mathrm{A} 41, \mu \mathrm{~A} 741 \mathrm{Y}$ <br> GENERAL-PURPOSE OPERATIONÄL AMPLIFIERS 

## TYPICAL CHARACTERISTICS



Figure 6

OPEN-LOOP SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE


Figure 7

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
VS
FREQUENCY


## TYPICAL CHARACTERISTICS



Figure 8


Figure 9


Figure 10

## DATA SHEET



## 1N4148; 1N4446; 1N4448 High-speed diodes

Product specification
Supersedes data of April 1996
File under Discrete Semiconductors, SC01

## FEATURES

- Hermetically sealed leaded glass SOD27 (DO-35) package
- High switching speed: max. 4 ns
- General application
- Continuous reverse voltage: max. 75 V
- Repetitive peak reverse voltage: max. 75 V
- Repetitive peak forward current: max. 450 mA .


## APPLICATIONS

- High-speed switching.


## DESCRIPTION

The 1N4148, 1N4446, 1N4448 are high-speed switching diodes fabricated in planar technology, and encapsulated in hermetically sealed leaded glass SOD27 (DO-35) packages.

## LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$V_{\text {RRM }}$	repetitive peak reverse voltage		-	75	V
$\mathrm{V}_{\mathrm{R}}$	continuous reverse voltage		-	75	V
$\mathrm{I}_{\mathrm{F}}$	continuous forward current	see Fig.2; note 1	-	200	mA
$\mathrm{I}_{\text {FRM }}$	repetitive peak forward current		-	450	mA
$\mathrm{I}_{\text {FSM }}$	non-repetitive peak forward current	square wave; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ prior to surge; see Fig. 4 $\begin{aligned} & t=1 \mu \mathrm{~s} \\ & \mathrm{t}=1 \mathrm{~ms} \\ & \mathrm{t}=1 \mathrm{~s} \end{aligned}$	-	$\begin{aligned} & 4 \\ & 1 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; note 1	-	500	mW
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+200	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	junction temperature		-	200	${ }^{\circ} \mathrm{C}$

## Note

1. Device mounted on an FR4 printed circuit-board; lead length 10 mm .

## ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\mathrm{F}}$	forward voltage   1N4148   1N4446   1N4448	$\begin{aligned} \hline \text { see Fig. } 3 \\ \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \\ \hline \end{aligned}$	$0.62$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 0.72 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\mathrm{R}}$	reverse current	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$; see Fig. 5		25	nA
		$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$; see Fig. 5	-	50	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{R}}$	reverse current; 1N4448	$\mathrm{V}_{R}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$; see Fig. 5	-	3	$\mu \mathrm{A}$
$\mathrm{C}_{\mathrm{d}}$	diode capacitance	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{R}}=0$; see Fig. 6		4	pF
$\mathrm{t}_{\mathrm{rr}}$	reverse recovery time	when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$;   measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$; see Fig. 7		4	ns
$\mathrm{V}_{\mathrm{fr}}$	forward recovery voltage	when switched from $I_{F}=50 \mathrm{~mA}$; $\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$; see Fig. 8	-	2.5	V

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$\mathrm{R}_{\text {th } j \text {-tp }}$	thermal resistance from junction to tie-point	lead length 10 mm	240	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\text {th } j \text {-a }}$	thermal resistance from junction to ambient	lead length 10 mm ; note 1	350	$\mathrm{~K} / \mathrm{W}$

## Note

1. Device mounted on a printed circuit-board without metallization pad.

## GRAPHICAL DATA



Device mounted on an FR4 printed-circuit board; lead length 10 mm .
Fig. 2 Maximum permissible continuous forward current as a function of ambient temperature.

(1) $\mathrm{T}_{\mathrm{j}}=175^{\circ} \mathrm{C}$; typical values.
(2) $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; typical values.
(3) $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; maximum values.

Fig. 3 Forward current as a function of forward voltage.




Fig. 7 Reverse recovery voltage test circuit and waveforms.




Fig. 8 Forward recovery voltage test circuit and waveforms.

## PACKAGE OUTLINE

$\square$

## DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or   more of the limititg values may cause permanent damage to the device. These are stress ratings only and operation   of the device at these or at any other conditions above those given in the Characteristics sections of the specification   is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

## LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale

## SIEMENS

## PNP Silicon AF Transistors

BC 327
BC 328

- High current gain
- High collector current
- Low collector-emitter saturation voltage
- Complementary types: BC 337, BC 338 (NPN)


Type	Marking	Ordering Code	Pin Configuration			Package ${ }^{1)}$
			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
BC 327	-	Q62702-C311	C	B	E	TO-92
BC 327-16		Q62702-C311-V3				
BC 327-25		Q62702-C311-V4				
BC 327-40		Q62702-C311-V2				
BC 328	Q62702-C312					
BC 328-16		Q62702-C312-V3				
BC 328-25		Q62702-C312-V4				
BC 328-40		Q62702-C312-V2				

[^4]
## Maximum Ratings

Parameter	Symbol	$\begin{aligned} & \text { Values } \\ & \text { BC } 327 \end{aligned}$	$\text { BC } 328$	Unit
Collector-emitter voltage	$V_{\text {ceo }}$	45	25	V
Collector-base voltage	$V$ сво	50	30	
Emitter-base voltage	$V$ Ebo	5		
Collector current	Ic	800		mA
Peak collector current	Iсм	1		A
Base current	Iв	100		mA
Peak base current	Івм	200		
Total power dissipation, $\mathrm{Tc}=66{ }^{\circ} \mathrm{C}$	$P_{\text {tot }}$	625		mW
Junction temperature	$T_{\text {j }}$	150		${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	$-65 \ldots+150$		

## Thermal Resistance

Junction - ambient	$R_{\mathrm{th} \mathrm{JA}}$	$\leq 200$	K/W
Junction - case ${ }^{1)}$	$R_{\mathrm{th} \mathrm{Jc}}$	$\leq 135$	

[^5]
## Electrical Characteristics

at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

## DC characteristics



[^6]
## Electrical Characteristics

at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

## AC characteristics

Transition frequency   $I \mathrm{c}=50 \mathrm{~mA}, V \mathrm{VE}=5 \mathrm{~V}, f=20 \mathrm{MHz}$	$f$	-	200	-	MHz
Output capacitance   $V$ cb $=10 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {obo }}$	-	12	-	pF
Input capacitance   $V_{\text {eb }}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {ibo }}$	-	60	-	

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{A}} ; T_{\mathrm{C}}\right)$


Collector current $I \mathrm{c}=f$ ( $V_{\mathrm{BE}}$ )
$V_{\text {Ce }}=1 \mathrm{~V}$


Permissible pulse load $R_{\mathrm{thJA}}=f\left(t_{\mathrm{p}}\right)$


Collector cutoff current $I$ сво $=f\left(T_{\mathrm{A}}\right)$
$V_{\text {сB }}=45 \mathrm{~V}$


DC current gain $h_{\mathrm{FE}}=f(\mathrm{Ic})$
$V_{\text {CE }}=1 \mathrm{~V}$


## Collector-emitter saturation voltage

$V \mathrm{CEsat}=f(\mathrm{Ic})$
$h_{\text {FE }}=10$


Transition frequency $f \mathrm{r}=f(\mathrm{IC})$
$f=20 \mathrm{MHz}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}$


## Base-emitter saturation voltage

$V_{\text {BEsat }}=f($ Ic $)$
$h_{\text {FE }}=10$


## Log Amplifier

The ICL8048 is a monolithic logarithmic amplifier capable of handling six decades of current input, or three decades of voltage input. It is fully temperature compensated and is nominally designed to provide 1 V of output for each decade change of input. For increased flexibility, the scale factor, reference current and offset voltage are externally adjustable.

## Part Number Information

PART   NUMBER	ERROR   $\left(25^{\circ} \mathrm{C}\right)$	TEMPERATURE   RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG.   NO.
ICL8048BCJE	30 mV	0 to 70	16 Ld CERDIP	F16.3

## Pinout



## Features

- Full Scale Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 0.5\%
- Temperature Compensated Operation $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Scale Factor, Adjustable 1V/Decade
- Dynamic Current Range. . . . . . . . . . . . . . . . . . . . . . 120dB
- Dynamic Voltage Range . . . . . . . . . . . . . . . . . . . . . 60dB
- Dual JFET Input Op Amps

Functional Diagram

## ICL8048



## Absolute Maximum Ratings

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 18 \mathrm{~V}$
I $_{\text {IN }}$ (Input Current) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA
IREF (Reference Current) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2mA
Voltage Between Offset Null and $\mathrm{V}+\ldots$. . . . . . . . . . . . . . . . . . . $\pm 0.5 \mathrm{~V}$
Output Short Circuit Duration. . . . . . . . . . . . . . . . . . . . . . . . Indefinite

## Operating Conditions

Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

## Thermal Information

Thermal Resistance (Typical, Note 1) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ CERDIP Package.

75
22
Maximum Junction Temperature (Hermetic Package or Die) . . . $175^{\circ} \mathrm{C}$
Maximum Storage Temperature Range . . . . . . . . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$

## Die Characteristics

Number of Transistors or Gates

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. $\theta_{\mathrm{JA}}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA}$, Scale Factor Adjusted for $1 \mathrm{~V} /$ Decade, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	ICL4048BC			UNITS
		MIN	TYP	MAX	
Dynamic Range $\mathrm{I}_{\mathrm{IN}}(1 \mathrm{nA}-1 \mathrm{~mA})$	$\mathrm{R}_{\text {IN }}=10 \mathrm{k} \Omega$	120	-	-	dB
$\mathrm{V}_{\text {IN }}(10 \mathrm{mV}-10 \mathrm{~V})$		60	-	-	dB
Error, \% of Full Scale	$\mathrm{I}_{\mathrm{N}}=1 \mathrm{nA}$ to 1 mA	-	0.20	0.5	\%
	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{IN}}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA} \\ & \hline \end{aligned}$	-	0.60	1.25	\%
Error, Absolute Value	$\mathrm{I}_{\mathrm{IN}}=1 \mathrm{nA}$ to 1 mA	-	12	30	mV
	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{IN}}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA} \end{aligned}$	-	36	75	mV
Temperature Coefficient of $\mathrm{V}_{\text {OUT }}$	$\mathrm{I}_{\mathrm{N}}=1 \mathrm{nA}$ to 1 mA	-	0.8	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Output	-	2.5	-	mV/V
Offset Voltage ( $\mathrm{A}_{1}$ and $\mathrm{A}_{2}$ )	Before Nulling	-	15	25	mV
Wideband Noise	At Output, for $\mathrm{I}_{\text {IN }}=100 \mu \mathrm{~A}$	-	250	-	$\mu \mathrm{V}_{\text {RMS }}$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 12$	$\pm 14$	-	V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$	-	V
Power Consumption		-	150	200	mW
Supply Current		-	5	6.7	mA

## Typical Performance Curves



FIGURE 1. TRANSFER FUNCTION FOR VOLTAGE INPUTS


FIGURE 2. TRANSFER FUNCTION FOR CURRENT INPUTS

## Typical Performance Curves (Continued)



FIGURE 3. SMALL SIGNAL BANDWIDTH vs INPUT CURRENT


FIGURE 5. MAXIMUM ERROR VOLTAGE AT THE OUTPUT vs INPUT VOLTAGE

## ICL8048 Detailed Description

The ICL8048 relies for its operation on the well known exponential relationship between the collector current and the base emitter voltage of a transistor:
$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{S}}\left[\exp \left(\frac{\mathrm{q} \mathrm{V}_{\mathrm{BE}}}{\mathrm{kT}}\right)-1\right]$
For base emitter voltages greater than 100 mV , Equation 1 becomes
$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{S}} \exp \left(\frac{\mathrm{q} \mathrm{V}_{\mathrm{BE}}}{\mathrm{kT}}\right)$
From Equation 2, it can be shown that for two identical transistors operating at different collector currents, the $\mathrm{V}_{\mathrm{BE}}$ difference $\left(\Delta \mathrm{V}_{\mathrm{BE}}\right)$ is given by:
$\Delta V_{B E}=-2.303 \times \frac{\mathrm{kT}}{\mathrm{q}} \log _{10}\left[\frac{\mathrm{l}, \frac{\mathrm{C} 1}{\mathrm{l}}}{\mathrm{C} 2}\right]$
(EQ. 3)


FIGURE 4. MAXIMUM ERROR VOLTAGE AT THE OUTPUT vs INPUT CURRENT


FIGURE 6. SMALL SIGNAL VOLTAGE GAIN vs INPUT VOLTAGE FOR $\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$

Referring to Figure 7 it is clear that the potential at the collector of $Q_{2}$ is equal to the $\Delta V_{B E}$ between $Q_{1}$ and $Q_{2}$. The output voltage is $\Delta \mathrm{V}_{\mathrm{BE}}$ multiplied by the gain of $\mathrm{A}_{2}$ :
$\mathrm{V}_{\text {OUT }}=-2.303\left(\frac{R_{1}+R_{2}}{R_{2}}\right)\left(\frac{\mathrm{kT}}{\mathrm{q}}\right) \log _{10}\left[\frac{\mathrm{I}_{\mathrm{IN}}}{\mathrm{I}_{\mathrm{REF}}}\right]$
The expression $2.303 \times \frac{\mathrm{kT}}{\mathrm{q}}$ has a numerical value of 59 mV at $25^{\circ} \mathrm{C}$; thus in order to generate $1 \mathrm{~V} /$ decade at the output, the ratio $\left(R_{1}+R_{2}\right) / R_{2}$ is chosen to be 16.9. For this scale factor to hold constant as a function of temperature, the $\left(R_{1}+R_{2}\right) / R_{2}$ term must have a $1 / T$ characteristic to compensate for $\mathrm{kT} / \mathrm{q}$.

In the ICL8048 this is achieved by making $\mathrm{R}_{1}$ a thin film resistor, deposited on the monolithic chip. It has a nominal value of $15.9 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$, and its temperature coefficient is


FIGURE 7. ICL8048 OFFSET AND SCALE FACTOR ADJUSTMENT
carefully designed to provide the necessary compensation. Resistor $R_{2}$ is external and should be a low T.C. type; it should have a nominal value of $1 \mathrm{k} \Omega$ to provide $1 \mathrm{~V} /$ decade, and must have an adjustment range of $\pm 20 \%$ to allow for production variations in the absolute value of $R_{1}$.

## ICL8048 Offset and Scale Factor Adjustment

A log amp, unlike an op amp, cannot be offset adjusted by simply grounding the input. This is because the log of zero approaches minus infinity; reducing the input current to zero starves $Q_{1}$ of collector current and opens the feedback loop around $A_{1}$. Instead, it is necessary to zero the offset voltage of $A_{1}$ and $A_{2}$ separately, and then to adjust the scale factor. Referring to Figure 7, this is done as follows:

1. Temporarily connect a $10 k \Omega$ resistor $\left(R_{0}\right)$ between pins 2 and 7. With no input voltage, adjust $\mathrm{R}_{4}$ until the output of $A_{1}$ (pin 7) is zero. Remove $R_{0}$.
Note that for a current input, this adjustment is not necessary since the offset voltage of $A_{1}$ does not cause any error for current source inputs.
2. Set $I_{I N}=I_{R E F}=1 \mathrm{~mA}$. Adjust $R_{5}$ such that the output of $A_{2}$ (pin 10) is zero.
3. Set $\mathrm{I}_{\mathbb{N}}=1 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA}$. Adjust $\mathrm{R}_{2}$ for $\mathrm{V}_{\mathrm{OUT}}=3 \mathrm{~V}$ (for a $1 \mathrm{~V} /$ decade scale factor) or 6 V (for a $2 \mathrm{~V} /$ decade scale factor).
Step \#3 determines the scale factor. Setting $I_{\mathbb{N}}=1 \mu A$ optimizes the scale factor adjustment over a fairly wide dynamic range, from 1 mA to 1 nA . Clearly, if the ICL8048 is to be used for inputs which only span the range $100 \mu \mathrm{~A}$ to 1 mA , it would be better to set $I_{\mathbb{N}}=100 \mu A$ in Step \#3. Similarly, adjustment for other scale factors would require different $l_{\mathrm{IN}}$ and $\mathrm{V}_{\text {OUT }}$ values.

## Applications Information

## ICL8048 Scale Factor Adjustment

The scale factor adjustment procedures outlined previously for the ICL8048, are primarily directed towards setting up 1V ( $\Delta \mathrm{V}_{\text {OUT }}$ ) per decade ( $\Delta \mathrm{I}_{\mathrm{IN}}$ or $\Delta \mathrm{V}_{\text {IN }}$ ) for the log amp, or one decade ( $\Delta \mathrm{V}_{\text {OUT }}$ ) per volt ( $\Delta \mathrm{V}_{\mathrm{IN}}$ ) for the antilog amp.
This corresponds to $\mathrm{K}=1$ in the respective transfer functions:
$V_{\text {OUT }}=-K \log _{10}\left[\frac{I_{I N}}{I_{\text {REF }}}\right]$
By adjusting $\mathrm{R}_{2}$ (Figure 7) the scale factor " K " in Equation 5 can be varied. The effect of changing $K$ is shown graphically in Figure 8 for the log amp. The nominal value of $\mathrm{R}_{2}$ required to give a specific value of $K$ can be determined from
Equation 6. It should be remembered that $R_{1}$ has a $\pm 20 \%$ tolerance in absolute value, so that allowance shall be made for adjusting the nominal value of $R_{2}$ by $\pm 20 \%$.
$R_{2}=\frac{941}{(\mathrm{~K}-0.059)} \Omega$

## ICL8048 Automatic Offset Nulling Circuit

The ICL8048 is fundamentally a logarithmic current amplifier. It can be made to act as a voltage amplifier by placing a resistor between the current input and the voltage source but, since $\mathrm{I}_{\mathrm{IN}}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OFFSET }}\right) / R_{\text {IN }}$, this conversion is accurate only when $V_{I N}$ is much greater than the offset voltage. A substantial reduction of $\mathrm{V}_{\text {OFFSET }}$ would allow voltage operation over a 120 dB range.



FIGURE 8. EFFECT OF VARYING "K" ON THE LOG AMPLIFIER
Figure 9 shows the ICL8048 in an automatic offset nulling configuration using the ICL7650S. The extremely low offset voltage of the ICL7650S forces its non-inverting input (and thus pin 2 of the ICL8048) to the same potential as its inverting input by nulling the first stage of the log amp. Since $V_{\text {OFFSET }}$ is now within a few $\mu \mathrm{V}$ of ground potential, $\mathrm{R}_{\mathrm{IN}}$ can perform its voltage to current conversion much more accurately, and without an offset trimmer pot. Step 1 of the offset and scale factor adjustment is eliminated, simplifying calibration.

NOTE: The ICL7650S op amp has a maximum supply voltage of 18 V . The ICL8048 will operate at this voltage, but $\mathrm{I}_{\text {REF }}$ must be limited to $200 \mu \mathrm{~A}$ or less for proper calibration and operation. Best performance will be achieved when the ICL7650S has a $\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ supply and the ICL8048 is at its recommended $\pm 15 \mathrm{~V}$ supply. See A053 for a method of powering the ICL7650S from a $\pm 15 \mathrm{~V}$ source.

## Frequency Compensation

Although the op amps in the ICL8048 are compensated for unity gain, some additional frequency compensation is required. This is because the log transistors in the feedback loop add to the loop gain. In the ICL8048, 150pF should be connected between Pins 2 and 7 (Figure 7).

## Error Analysis

Performing a meaningful error analysis of a circuit containing a $\log$ and antilog amplifiers is more complex than dealing with a similar circuit involving only op amps. In this data sheet every effort has been made to simplify the analysis task, without in any way compromising the validity of the resultant numbers.

The key difference in making error calculations in log/antilog amps, compared with op amps, is that the gain of the former is a function of the input signal level. Thus, it is necessary, when referring errors from output to input, or vice versa, to check the input voltage level, then determine the gain of the circuit by referring to the graphs given in the Typical Performance Curves section.

The various error terms in the log amplifier, the ICL8048, are Referred To the Output (RTO) of the device. The errors are expressed in this way because in the majority of systems a number of log amps interface with an antilog amp, as shown in Figure 10.


It is very straightforward to estimate the system error at node (A) by taking the square root of the sum-of-the-squares of the errors of each contributing block.

Total Error $=\sqrt{x^{2}+y^{2}+z^{2}}$ at $(A)$
If required, this error can be referred to the system output through the voltage gain of the antilog circuit, using the voltage gain versus input voltage plot.

The numerical values of $x, y$, and $z$ in the above equation are obtained from the maximum error voltage plots. For example, with the ICL8048BC, the maximum error at the output is 30 mV at $25^{\circ} \mathrm{C}$. This means that the measured output will be within 30 mV of the theoretical transfer function, provided the unit has been adjusted per the procedures described previously. Figure 11 illustrates this point.


FIGURE 11. TRANSFER FUNCTION FOR CURRENT INPUTS
To determine the maximum error over the operating temperature range, the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ absolute error values given in the table of electrical specifications should be used. For intermediate temperatures, assume a linear increase in the error between the $25^{\circ} \mathrm{C}$ value and the $70^{\circ} \mathrm{C}$ value.

It is important to note that the ICL8048 requires positive values of $\mathrm{I}_{\text {REF }}$, and the input current must also be positive. Application of negative $\mathrm{I}_{\mathrm{IN}}$ to the ICL8048 or negative $\mathrm{I}_{\mathrm{REF}}$ will cause malfunction, and if maintained for long periods, would lead to device degradation. Some protection can be provided by placing a diode between pin 7 and ground.

## Setting Up the Reference Current

The input current reference pin (l $\mathrm{l}_{\mathrm{REF}}$ ) is not a true virtual ground. For the ICL8048, a fraction of the output voltage is seen on Pin 16 (Figure 7). This does not constitute an appreciable error provided $\mathrm{V}_{\text {REF }}$ is much greater than this voltage. A 10 V or 15 V reference satisfies this condition.

Alternatively, I IREF can be provided from a true current source. One method of implementing such a current source is shown in Figure 12.


## Log of Ratio Circuit, Division

The ICL8048 may be used to generate the log of a ratio by modulating the $I_{\text {REF }}$ input. The transfer function remains the same, as defined by Equation 7:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{OUT}}=-\mathrm{K} \log _{10}\left[\frac{\mathrm{I}_{\mathrm{IN}}}{\mathrm{I}_{\mathrm{REF}}}\right] \tag{EQ.7}
\end{equation*}
$$

Clearly it is possible to perform division using just one ICL8048, followed by an antilog amplifier. For multiplication, it is generally necessary to use two log amps, summing their outputs into an antilog amp.

To avoid the problems caused by the I REF input not being a true virtual ground (discussed in the previous section), the circuit of Figure 12 is again recommended if the $I_{\text {REF }}$ input is to be modulated.

## Definition of Terms

In the definitions which follow, it will be noted that the various error terms are referred to the output of the log amp, and to the input of the antilog amp. The reason for this is explained on the previous page.

Dynamic Range. The dynamic range of the ICL8048 refers to the range of input voltages or currents over which the device is guaranteed to operate.

Error, Absolute Value. The absolute error is a measure of the deviation from the theoretical transfer function, after performing the offset and scale factor adjustments as outlined, (ICL8048). It is expressed in mV and referred to the linear axis of the transfer function plot. Thus, in the case of the ICL8048, it is a measure of the deviation from the theoretical output voltage for a given input current or voltage.

The absolute error specification is guaranteed over the dynamic range.

FEATURES
Very High Accuracy: 10.000 Volts $\pm 2.5 \mathrm{mV}$ (L and U)
Low Temperature Coefficient: 3ppm/ C
Performance Guaranteed $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
10 mA Output Current Capability
Low Noise
Short Circuit Protected
Available as /883B

## PRODUCT DESCRIPTION

The AD2700 family of precision 10 volt references offer the user excellent accuracy and stability at a moderate price by combining the recognized advantages of thin film technology and active laser trimming. The low temperature drift ( $3 \mathrm{ppm} / /^{\circ} \mathrm{C}$ ) achieved with these technologies can be matched only by the use of ovens, chip heaters for temperature regulation, or with hand selected components and manual trimming. In addition, temperature-regulated devices are guaranteed only up to $+85^{\circ} \mathrm{C}$ operation, whereas the U - and S -grade devices in the AD2700 family are guaranteed to $+125^{\circ} \mathrm{C}$.
The AD2700 is a +10 volt reference which is designed to interface with high accuracy bipolar D/A converters of 10 and 12 bit resolution. The 10 mA output drive capability also makes the AD2700 ideal for use as a general positive system reference.

The AD2701 is a negative 10 volt reference especially designed to interface with CMOS D/A and A/D converters, as shown in the applications. For systems requiring a dual tracking reference, the AD2702 offers both positive and negative precision 10 volt outputs in a single package. Both are often used with 52XX Series 12-bit A/D converters which require -10 V external references for high accuracy over wide temperature ranges.
All three devices are offered in " J " and " L " grades for operation from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and " S " and " U " grades for the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. Screening to MIL-STD883 is available for " $S$ " and " $U$ " grades of the AD2700 family.

Information furnished by Anelog Devices is believed to be accurate and reliable. However, no remponsibility is assumed by Analog Devices for its use; nor for eny infringments of patents or other rights of third parties which may realt from its use. No license is granted by implication or otherwise under eny petent or patent rights of Analog Devices.

## FUNCTIONAL BLOCK DIAGRAMS



## PRODUCT HIGHLIGHTS

1. Active laser trimming of both initial accuracy and temperature performance results in very high accuracy over the temperature range without external components. The AD2700/01/02 LD grades have a maximum output voltage error at $25^{\circ} \mathrm{C}$ of $\pm 2.5 \mathrm{mV}$ with no external adjustments.
2. The performance of the AD2700 series is achieved by a well-characterized design and precise control over the manufacturing process.
3. The AD2700 series is well suited for a broad range of applications requiring an accurate, stable reference source such as high resolution data converters ( 12 or 14 bits), test and measurement systems and calibration standards.

Model	Output
AD2700	+10.000 V
AD2701	-10.000 V
AD2702	$\pm 10.000 \mathrm{~V}$

P.O. Box 280; Norwood, Massachusetts 02062 U.S.A. Tel: 617/329-4700
Telex: 924491
Twx: 710/394-6577
Cables: ANALOG NORWOODMASS


MODEL	JD	LD	SD	UD
ABSOLUTE MAX RATINGS				
Input Voltage (for applicable supply)	$\pm 20 \mathrm{~V}$	*	*	*
Power Dissipation © $+\mathbf{2 5}{ }^{\circ} \mathrm{C}-\mathrm{AD} 2700,01$	300 mW	*	*	*
- AD2702	450 mW	*	*	*
Operating Temperature Range	$-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	***
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	*		*
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$	*	-	*
Short Circuit Protection (to GND)	Continuous	*	*	-
OUTPUT VOLTAGE ERROR @ + $25^{\circ} \mathrm{C}$				
AD2700 10.000V	$\pm 0.005 \mathrm{~V}$	$\pm 0.0025 \mathrm{~V}$	*	**
AD2701 -10.000V	$\pm 0.005 \mathrm{~V}$	$\pm 0.0025 \mathrm{~V}$	*	**
AD2702 $\pm 10.000 \mathrm{~V}$	$\pm 0.005 \mathrm{~V}$	$\pm 0.0025 \mathrm{~V}$	*	**
$\begin{aligned} & \text { OUTPUT CURRENT }{ }^{1}-@+25^{\circ} \mathrm{C} \\ & \quad\left(\mathrm{~V}_{\mathrm{IN}}= \pm 13 \text { to } \pm 18 \mathrm{~V}\right) \text { over op. temp. range } \end{aligned}$	$\pm 10 \mathrm{~mA}$	*	*	*
	$\pm 5 \mathrm{~mA}$	$+5 \mathrm{~mA},-2 \mathrm{~mA}$	**	**
OUTPUT VOLTAGE ERROR - AD2700,01 $\left(T_{\text {min }} \text { to } T_{\text {max }}\right)^{2}$	$10^{\text {pppm }}{ }^{\circ} \mathrm{C}$	$3^{3} \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	**	**
	$\pm 11.0 \mathrm{mV}$	$\pm 4.3 \mathrm{mV}$	$\pm 8 \mathrm{mV}$	$\pm 5.5 \mathrm{mV}$
AD2702	$10^{\text {pppm }}{ }^{\circ} \mathrm{C}$	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	**	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	$\pm 11.0 \mathrm{mV}$	$\pm 5.5 \mathrm{mV}$	$\pm 10.0 \mathrm{mV}$	$\pm 5.5 \mathrm{mV}$
LINE REGULATION				
$\mathrm{V}_{\mathrm{IN}}= \pm 13.5$ to $\pm 16.5 \mathrm{~V}$	$300 \mu \mathrm{~V} / \mathrm{V}$	*	*	*
LOAD REGULATION				
0 to $\pm 10 \mathrm{~mA}$	$50 \mu \mathrm{~V} / \mathrm{mA}$	*	*	*
OUTPUT RESISTANCE	$0.05 \Omega$	*	*	*
INPUT VOLTAGE, OPERATING	$\pm 13 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	*	*	*
QUIESCENT CURRENT - AD2700, 01	$\pm 14 \mathrm{~mA}$	*	*	*
- AD2702	$+17 \mathrm{~mA},-4 \mathrm{~mA}$	*	*	*
NOISE				
LONG TERM STABILITY (@ + $55^{\circ} \mathrm{C}$ )	$100 \mathrm{ppm} / 1000 \mathrm{Hrs}$. (t	*	*	*
OFFSET ADJUST RANGE (Sec Diagrams)	$\pm 20 \mathrm{mV}$ (min)	*	*	*
OFFSET ADJUST TEMP DRIFT EFFECT	$\pm 4 \mu \mathrm{~V}{ }^{\circ} \mathrm{C}$ per mV of Adjust (typ)	*	*	*
PACKAGE OPTION ${ }^{3,4}$	DH-14C	DH-14C	DH-14C	DH-14C

## NOTES

"Same as "JD" grade performance.

- "Same as "LD" grade performance.
- "Same as "SD" grade performance.
${ }^{1}$ Specified with resistive load to common. Device not intended for use in driving a dynamic load.
${ }^{2}$ Output voltage error as a function of temperature is determined using the box method. Each unit is tested at $T_{\min }, T_{\text {max }}$ and $+25^{\circ}$ C. At each temperature VOUT must fall within the rectangular area bounded by the minimum and maximum temperature and whose maximum VOUT value is equal to VOUT nominal plus or minus the maximum $+25^{\circ} \mathrm{C}$ error plus the maximum drift error from $+25^{\circ} \mathrm{C}$. The box limits are noted below the drift values used to calculate the box.
${ }^{2}$ Analog Devices reserves the right to ship side-brazed ceramic packages
(outline DH-14D) in lieu of the standard ceramic packages for $J$ and
L grade parts."
${ }^{4}$ See Section 14 for package outline information.
Specifications subject to change without notice.



## Pin Designations

## USING AD2700 REFERENCE WITH THE AD7520 AND AN IC AMPLIFIER TO BUILD A DAC

The AD2700 series is ideal for use with the AD7520 series of CMOS D/A converters. A CMOS converter in a unipolar application as shown below performs an inversion of the voltage reference input. Thus, use of the $\mathbf{+ 1 0}$ volt AD2700 reference will result in a 0 to -10 volt output range. Alternatively, using


Unipolar Binary Operation

DIGITAL INPUT
1111111111
1000000001
1000000000
0111111111
0000000001
0000000000

NOTE: 1 LSB $=2^{-10} V_{\text {REF }}$
Table I. Code Table - Unipolar Binary Operation


Fine Trim Connections
the $\mathbf{- 1 0}$ volt AD2701 will result in a $\mathbf{0}$ to $\mathbf{+ 1 0}$ volt range. Two operational amplifiers are used to give a bipolar output range of $\mathbf{- 1 0}$ volt to +10 volt, as shown in the lower figure. Either the AD2700 or AD2701 can be used, depending on the transfer code characteristic desired. For more detailed applications information, refer to the AD7520 Data Sheet.


Bipolar Operation (4-Quadrant Multiplication)

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-\mathrm{V}_{\text {REF }}\left(1-2^{-9}\right)$
1000000001	$-\mathrm{V}_{\text {REF }}{ }^{\left(2^{-9}\right)}$
1000000000	0
0111111111	$V_{\text {REF }}\left(2^{-9}\right)$
0000000001	$V_{\text {REF }}\left(1-2^{-9}\right)$
0000000000	$V_{\text {REF }}$

Table II. Code Table - Bipolar (Offset Binary) Operation

## AD2700/AD2701/AD2702

USING THE AD2700 VOLTAGE REFERENCE WITH D/A CONVERTER
An AD2700 Voltage Reference can be used with an inverting operational amplifier and an R-2R ladder network. If all bits but the MSB are off (i.e., grounded), the output voltage is $(-R / 2 R) E_{R E F}$. If all bits but Bit 2 are off, it can be shown that the output voltage is $1 / 2(-\mathrm{R} / 2 \mathrm{R}) \mathrm{E}_{\mathrm{REF}}=1 / 4 \mathrm{E}_{\mathrm{REF}}$ : The lumped resistance of all the less-significant-bit circuitry (to the left of Bit 2) is $2 R$; the Thevenin equivalent looking back from the MSB towards Bit 2 is the generator, $\mathrm{E}_{\text {REF }} / 2$, and the series resistance 2 R ; since the grounded MSB series

a. Basic Circuit
resistance, $2 R$, has virtually no influence - because the amplifier summing point is at virtual ground - the output voltage is therefore $-\mathrm{E}_{\mathrm{REF}} / 4$. The same line of thinking can be employed to show that the nth bit produces an increment of output equal to $2^{-n} \mathrm{E}_{\mathrm{REF}}$.

b. Example: Contribution of Bit 2; All Other Bits " 0 "

c. Simplified Equivalent of Circuit (b.)

PACKAGE DIMENSIONS

14-Pin Dual-In-Line Metal Package


14-Pin Dual-In-Line Ceramic Package


## CNational LM109/LM309

5-Volt Regulator

## General Description

The LM109 series are complete 5V regulators fabricated on a single silicon chip. They are designed for local regulation on digital logic cards, eliminating the distribution problems association with single-point regulation. The devices are available in two standard transistor packages. In the solid-kovar TO-5 header, it can deliver output currents in excess of 200 mA , if adequate heat sinking is provided. With the TO-3 power package, the available output current is greater than 1A.
The regulators are essentially blowout proof. Current limiting is included to limit the peak output current to a safe value. In addition, thermal shutdown is provided to keep the IC from overheating. If internal dissipation becomes too great, the regulator will shut down to prevent excessive heating.
Considerable effort was expended to make these devices easy to use and to minimize the number of external components. It is not necessary to bypass the output, although this
does improve transient response somewhat. Input bypassing is needed, however, if the regulator is located very far from the filter capacitor of the power supply. Stability is also achieved by methods that provide very good rejection of load or line transients as are usually seen with TTL logic.
Although designed primarily as a fixed-voltage regulator, the output of the LM109 series can be set to voltages above 5 V , as shown. It is also possible to use the circuits as the control element in precision regulators, taking advantage of the good current-handling capability and the thermal overload protection.

## Features

- Specified to be compatible, worst case, with TTL and DTL
- Output current in excess of 1 A
- Internal thermal overload protection
- No external components required


## Schematic Diagram



Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Input Voltage
Power Dissipation
Internally Limited
Electrical Characteristics (Note 2)

Parameter	Conditions	LM109			LM309			Units
		Min	Typ	Max	Min	Typ	Max	
Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	4.7	5.05	5.3	4.8	5.05	5.2	V
Line Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & 7.10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 25 \mathrm{~V} \end{aligned}$		4.0	50		4.0	50	mV
Load Regulation TO-39 Package TO-3 Package	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 0.5 \mathrm{~A} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 1.5 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \hline \end{aligned}$
Output Voltage	$\begin{aligned} & 7.40 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 25 \mathrm{~V}, \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq \mathrm{I}_{\mathrm{MAX}}, \\ & \mathrm{P}<\mathrm{P}_{\mathrm{MAX}} \end{aligned}$	4.6		5.4	4.75		5.25	V
Quiescent Current	$7.40 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$		5.2	10		5.2	10	mA
Quiescent Current Change	$\begin{aligned} & 7.40 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq \mathrm{I}_{\mathrm{MAX}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$		40			40		$\mu \mathrm{V}$
Long Term Stability			10			20		mV
Ripple Rejection	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	50			50			dB
Thermal Resistance, Junction to Case   TO-39 Package TO-3 Package	(Note 3)		$\begin{aligned} & 15 \\ & 2.5 \end{aligned}$			$\begin{aligned} & 15 \\ & 2.5 \end{aligned}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the LM 109 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 309 ; \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$; and $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~A}$ for the TO-39 package or Iout $=0.5 \mathrm{~A}$ for the TO-3 package. For the TO-39 package, $\mathrm{I}_{\mathrm{MAX}}=0.2 \mathrm{~A}$ and $\mathrm{P}_{\text {MAX }}=2.0 \mathrm{~W}$. For the TO-3 package, $\mathrm{I}_{\text {MAX }}=1.0 \mathrm{~A}$ and $\mathrm{P}_{\text {MAX }}$ $=20 \mathrm{~W}$.
Note 3: Without a heat sink, the thermal resistance of the TO-39 package is about $150^{\circ} \mathrm{C} / \mathrm{W}$, while that of the $\mathrm{TO}-3$ package is approximately $35^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the values specified, depending on the efficiency of the sink.
Note 4: Refer to RETS109H drawing for LM109H or RETS109K drawing for LM109K military specifications.

## Connection Diagrams



Order Number LM109K STEEL or
LM309K STEEL
See NS Package Number K02A
Order Number LM109K/883
See NS Package Number K02C

## Application Hints

1. Bypass the input of the LM109 to ground with $\geq 0.2 \mu \mathrm{~F}$ ceramic or solid tantalum capacitor if main filter capacitor is more than 4 inches away.
2. Avoid insertion of regulator into "live" socket if input voltage is greater than 10 V . The output will rise to within 2 V of the unregulated input if the ground pin does not make contact, possibly damaging the load. The LM109 may also be damaged if a large output capacitor is charged up, then discharged through the internal clamp zener when the ground pin makes contact.
3. The output clamp zener is designed to absorb transients only. It will not clamp the output effectively if a failure occurs in the internal power transistor structure. Zener dynamic impedance is $\approx 4 \Omega$. Continuous RMS current into the zener should not exceed 0.5 A .
4. Paralleling of LM109s for higher output current is not recommended. Current sharing will be almost nonexistent, leading to a current limit mode operation for devices with the highest initial output voltage. The current limit devices may also heat up to the thermal shutdown point ( $\approx 175^{\circ} \mathrm{C}$ ). Long term reliability cannot be guaranteed under these conditions.

## Crowbar Overvoltage Protection


5. Preventing latchoff for loads connected to negative voltage:
If the output of the LM109 is pulled negative by a high current supply so that the output pin is more than 0.5 V negative with respect to the ground pin, the LM109 can latch off. This can be prevented by clamping the ground pin to the output pin with a germanium or Schottky diode as shown. A silicon diode (1N4001) at the output is also needed to keep the positive output from being pulled too far negative. The $10 \Omega$ resistor will raise $+\mathrm{V}_{\text {OUT }}$ by $\approx 0.05 \mathrm{~V}$.

*Zener is internal to LM109.
${ }^{* *}$ Q1 must be able to withstand 7A continuous current if fusing is not used $* *$ Q1 must be able to withstand 7A continuous current if fusing is no
at regulator input. LM109 bond wires will fuse at currents above 7A. tQ2 is selected for surge capability. Consideration must be given to filter capacitor size, transformer impedance, and fuse blowing time. $t+$ Trip point is $\approx 7.5 \mathrm{~V}$.

## Typical Performance Characteristics

## Maximum Average <br> Power Dissipation (LM109K)



DS007138-16

Maximum Average
Power Dissipation (LM309K)


Output Impedance


## Typical Performance Characteristics (Continued)



Current Limit
Characteristics (Note 5)


Maximum Average
Power Dissipation (LM309H)


Thermally Induced Output Voltage Variation


## Ripple Rejection



## Ripple Rejection



Note 5: Current limiting foldback characteristics are determined by input output differential, not by output voltage.

## Input-Output Differential (V)



Output Voltage (V)


Output Voltage (V)


## Typical Performance Characteristics (Continued)



## Typical Applications


*Required if regulator is located more than 4 " from power supply filter capacitor.
$\dagger$ Although no output capacitor is needed for stability, it does improve
transient response.
C 2 should be used whenever long wires are used to connect to the load,
or when transient response is critical.
Note: Pin 3 electrically connected to case.

## Typical Applications (Continued)

High Stability Regulator*

*Regulation better than $0.01 \%$, load, line and temperature, can be obtained.
tDetermines zener current. May be adjusted to minimize thermal drift.
$\ddagger$ Solid tantalum.

*Determines output current. If wirewound resistor is used, bypass with $0.1 \mu \mathrm{~F}$

Physical Dimensions inches (millimeters) unless otherwise noted


Metal Can Package (H) Order Number LM109H, LM109H/883 or LM309H NS Package Number H03A


Metal Can Package (K)
Order Number LM109K STEEL, LM309K STEEL
NS Package Number K02A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


## LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

## SIEMENS

## PNP Silicon AF Transistors

BC 327
BC 328

- High current gain
- High collector current
- Low collector-emitter saturation voltage
- Complementary types: BC 337, BC 338 (NPN)


Type	Marking	Ordering Code	Pin Configuration			Package ${ }^{1)}$
			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
BC 327	-	Q62702-C311	C	B	E	TO-92
BC 327-16		Q62702-C311-V3				
BC 327-25		Q62702-C311-V4				
BC 327-40		Q62702-C311-V2				
BC 328	Q62702-C312					
BC 328-16		Q62702-C312-V3				
BC 328-25		Q62702-C312-V4				
BC 328-40		Q62702-C312-V2				

[^7]
## Maximum Ratings

Parameter	Symbol	$\begin{aligned} & \text { Values } \\ & \text { BC } 327 \end{aligned}$	$\text { BC } 328$	Unit
Collector-emitter voltage	$V_{\text {ceo }}$	45	25	V
Collector-base voltage	$V$ сво	50	30	
Emitter-base voltage	$V$ Ebo	5		
Collector current	Ic	800		mA
Peak collector current	Iсм	1		A
Base current	Iв	100		mA
Peak base current	Івм	200		
Total power dissipation, $\mathrm{Tc}=66{ }^{\circ} \mathrm{C}$	$P_{\text {tot }}$	625		mW
Junction temperature	$T_{\text {j }}$	150		${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	$-65 \ldots+150$		

## Thermal Resistance

Junction - ambient	$R_{\mathrm{th} \mathrm{JA}}$	$\leq 200$	K/W
Junction - case ${ }^{1)}$	$R_{\mathrm{th} \mathrm{Jc}}$	$\leq 135$	

[^8]
## Electrical Characteristics

at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

## DC characteristics



[^9]
## Electrical Characteristics

at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

## AC characteristics

Transition frequency   $I \mathrm{c}=50 \mathrm{~mA}, V \mathrm{VE}=5 \mathrm{~V}, f=20 \mathrm{MHz}$	$f$	-	200	-	MHz
Output capacitance   $V$ cb $=10 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {obo }}$	-	12	-	pF
Input capacitance   $V_{\text {eb }}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {ibo }}$	-	60	-	

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{A}} ; T_{\mathrm{C}}\right)$


Collector current $I \mathrm{c}=f$ ( $V_{\mathrm{BE}}$ )
$V_{\text {Ce }}=1 \mathrm{~V}$


Permissible pulse load $R_{\mathrm{thJA}}=f\left(t_{\mathrm{p}}\right)$


Collector cutoff current $I$ сво $=f\left(T_{\mathrm{A}}\right)$
$V_{\text {сB }}=45 \mathrm{~V}$


DC current gain $h_{\mathrm{FE}}=f(\mathrm{Ic})$
$V_{\text {CE }}=1 \mathrm{~V}$


## Collector-emitter saturation voltage

$V \mathrm{CEsat}=f(\mathrm{Ic})$
$h_{\text {FE }}=10$


Transition frequency $f \mathrm{r}=f(\mathrm{IC})$
$f=20 \mathrm{MHz}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}$


## Base-emitter saturation voltage

$V_{\text {BEsat }}=f($ Ic $)$
$h_{\text {FE }}=10$


# Peter F. Orlowski 

# Praktische Elektronik 

Datenblätter Analog- und CMOS-Technik

$\mathrm{f}_{\mathrm{MAX}} \quad$ Betriebsfrequenz. Dies ist die höchste Frequenz, bei der die Schaltung noch arbeitet.
$t_{\text {PHL }}$ Übertragungsverzögerung vom Eingang zum Ausgang, wenn der Ausgang von H nach L geht.
$t_{\text {PLH }} \quad$ Ubertragungsverzögerung vom Eingang zum Ausgang, wenn der Ausgang von L nach H geht.
Freigabe-Verzögerungszeit. Sie wird zwischen Eingang und Ausgang gemessen, wenn der Ausgang vom Trista-te-Zustand auf H wechselt.
$t_{\text {PZL }} \quad$ Freigabe-Verzögerungszeit. Sie wird zwischen Eingang und Ausgang gemessen, wenn der Ausgang vom Trista-te-Zustand auf $L$ wechselt.
$\mathrm{t}_{\mathrm{PHZ}} \quad$ Sperr-Verzögerungszeit, bis der Ausgang vom H-Pegel in den Tristate-Zustand geht.
$t_{\text {pLz }} \quad$ Sperr-Verzögerungszeit, bis der Ausgang vom L-Pegel in den Tristate-Zustand geht.
$\mathrm{t}_{\mathrm{w}} \quad$ Eingangssignal-Impulsbreite.
$t_{s} \quad$ Eingangs-Vorbereitungszeit. Es ist die Zeit, um die die Daten eher anliegen müssen, als der Taktimpuls kommt.
$t_{\mathrm{H}} \quad$ Eingangs-Haltezeit. Es ist die Zeit, während der die Daten noch anliegen müssen, nachdem der Taktimpuls gekommen ist.
$t_{\text {REM }} \quad$ Vorbereitungszeit für den Takt. Es ist die Zeit, die zwischen Wegnahme von irgendwelchen Lösch- oder Freigabesignalen und dem Eintreffen des Taktimpulses mindestens erforderlich ist. Sie wird manchmal auch als Erholungszeit bezeichnet.
$\mathrm{t}_{\mathrm{r}} \quad$ Anstiegszeit des Eingangssignals.
$4_{4} \quad$ Abfallzeit des Eingangssignals.
${ }^{t}$ TLH $\quad$ Anstiegszeit des Ausgangs (Ubergang von $L$ nach $H$ ).
$\mathrm{t}_{\text {THL }} \quad$ Abfallzeit des Ausgangs (Übergang von H nach L ).

übentragungsverzögerung


Kurventorm des Eingangsimpulses


Kurvenläufe der Vorbereitungs- und Haltezeit


Kurvenverlauf der Erholungszeit


Kurvenformen bei Freigabe und Sperren des Tristate-Ausgangs

## Allgemeine Betriebskenngrößen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $\mathrm{V}_{\mathrm{OD}}$	$-0,5 \mathrm{bls}+18$	V
Eingangsspannung $\mathrm{V}_{\mathbf{I N}}$	$-0,5 \mathrm{bis} \mathrm{V}_{\mathrm{DO}}+0,5$	V
max. Eingangsstrom r (je Anschlub)	10	mA
Betriebstemperatur $\mathrm{T}_{\mathrm{A}}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\text {sto }}$	$-65 \mathrm{bis}+150$	${ }^{\circ} \mathrm{C}$

Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C}$

Spezifische Daten		$V_{D D}$	min.	typ.	max.	Einh.
Ausgangsspannung $\mathrm{V}_{\mathrm{OL}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	V
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	V
Eingangsspannung $\mathrm{V}_{\text {IL }}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 2,0 \\ & 2,5 \end{aligned}$	V
Eingangsspannung $\mathrm{V}_{\mathbf{I H}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4,0 \\ 8,0 \\ 12,5 \end{array}$	$\begin{aligned} & \mathbf{2 , 7 5} \\ & 5,50 \\ & 8,25 \end{aligned}$	-	V
Ausgangsstrom $\mathrm{IOH}_{\mathrm{OH}}$	$\begin{aligned} & V_{\mathrm{OH}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=4.6 \mathrm{~V} \\ & v_{\mathrm{OH}}=9,5 \mathrm{~V} \\ & v_{\mathrm{OH}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -0,8 \\ & -0,16 \\ & -0,4 \\ & -1,2 \end{aligned}$	$\begin{aligned} & -1,7 \\ & -0.36 \\ & -0,9 \\ & -3.5 \end{aligned}$	-	mA
Ausgangsstrom lol	$\begin{aligned} & V_{\mathrm{OL}}=0,4 \mathrm{~V} \\ & v_{\mathrm{O}}=0,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=1,5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0,44 \\ & 1,1 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 0,88 \\ & 2,25 \\ & 8,8 \end{aligned}$	-	mA
Ruhestrom $\mathrm{I}_{\infty}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0,0005 \\ & 0,0010 \\ & 0,0015 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 2,0 \\ & 4,0 \end{aligned}$	$\mu \mathrm{A}$



Typische Strom- und Spannungsübertragung


Typische Spannungsübertragung

| Spezifische Daten | $V_{D O}$ | min. | typ. | $\max$. | Einh. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Eingangsstrom $I_{\mathbb{N}}$ | 15 | - | $\pm 0,00001$ | $\pm 0,3$ | $\mu \mathrm{~A}$ |
| Eingangskapazitat $C_{\mathbb{W}}$ | - | - | 5,0 | 7,5 | PF |

Schaltverhalten bel $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeft titu	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	180 90 65	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	ns
	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	100 50 40	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Verzǒgerungszeit tpLH, ${ }_{\text {PrHL }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	115 55 40	$\begin{array}{r} 230 \\ 110 \\ 80 \end{array}$	ns

Anschlubbelegung


Allgemeine Betriebskenngrößen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $V_{D O}$	$-0,5$ bis +18	V
Eingangsspannung $V_{I N}$	$-0,5$ bis $\mathrm{V}_{\mathrm{DO}}+0.5$	V
max. Eingangsstrom I (e AnschiuB)	10	mA
Berriebstemperatur $\mathrm{T}_{\mathrm{A}}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\mathrm{stg}}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

Elektrische Eigenschaften bel $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Spezifische Daten		$\mathrm{V}_{\text {OD }}$	min.	typ.	max.	Einh.
Ausgangsspannung $V_{0}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	V
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	V
Eingangsspannung $V_{\text {IL }}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3,0 \\ & 4,0 \end{aligned}$	V
Eingangsspannung $\mathrm{V}_{1 H}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 3,5 \\ 7,0 \\ 11,0 \end{array}$	$\begin{aligned} & 2,75 \\ & 5,50 \\ & 8,25 \end{aligned}$	-	$v$
Ausgangsstrom $\mathbf{l o w}^{(H)}$	$\begin{aligned} & V_{\mathrm{OH}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=9,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 5.0 \\ 5.0 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & -2,1 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -4,2 \\ & -0,88 \\ & -2,25 \\ & -8,8 \end{aligned}$	-	mA
Ausgangssirom $\mathrm{l}_{0}$	$\begin{aligned} & v_{\alpha}=0.4 \mathrm{~V} \\ & v_{\alpha}=0.5 \mathrm{~V} \\ & v_{\alpha}=1.5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.44 \\ & 1,1 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 0,88 \\ & 2,25 \\ & 8,8 \end{aligned}$	-	mA
Ruhestrom lod		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0,0005 \\ & 0,0010 \\ & 0,0015 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 2,0 \\ & 4,0 \end{aligned}$	$\mu \mathrm{A}$


Spezifische Daten	$V_{D D}$	$\min$.	typ.	max.	Einh.
Eingangsstrom $I_{\mathbb{N}}$	15	-	$\pm 0,00001$	$\pm 0,3$	$\mu \mathrm{~A}$
Eingangskapazitát $C_{\mathbb{I}}$	-	-	5,0	7,5	pF

Schaltverhalten bel $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit tim	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabfallzeit $t_{\text {THL }}$	$\begin{array}{r} 5,0 \\ 10 \\ 15 \end{array}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 250 \\ 100 \\ 80 \end{array}$	ns
Verzögerungszeit tpur. ${ }_{\text {tphL }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 125 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 250 \\ 100 \\ 80 \end{array}$	ns

Anschlubbelegung


## Allgemeine Betriebskenngrößen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $V_{D D}$	$-0,5$ bis +18	V
Eingangsspannung $V_{I N}$	$-0,5$ bis $V_{D D}+0,5$	V
max. Eingangsstrom $I$ (je AnschluB)	10	mA
Betriebstemperatur $\mathrm{T}_{\mathrm{A}}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\text {stg }}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Spezifische Daten		$V_{D D}$	min.	typ.	max.	Einh.
Ausgangsspannung $\mathrm{V}_{\mathrm{OL}}$		$\begin{array}{r} 5,0 \\ 10 \\ 15 \end{array}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	V
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	V
Eingangsspannung $\mathrm{V}_{\mathrm{IL}}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$-$	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3,0 \\ & 4,0 \end{aligned}$	V
Eingangsspannung $\mathrm{V}_{\mathbf{I H}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 3,5 \\ 7,0 \\ 11,0 \end{array}$	$\begin{aligned} & 2,75 \\ & 5,50 \\ & 8,25 \end{aligned}$	-	V
Ausgangsstrom $\mathrm{IOH}_{\mathrm{OH}}$	$\begin{aligned} & V_{\mathrm{OH}}=2,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & V_{\mathrm{OH}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 5,0 \\ 5,0 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & -2,1 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -4,2 \\ & -0,88 \\ & -2,25 \\ & -8,8 \end{aligned}$	-	mA
Ausgangsstrom lol	$\begin{aligned} & \mathrm{V}_{\mathrm{oL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ol}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ol}}=1,5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 0.44 \\ & 1,1 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 0,88 \\ & 2.25 \\ & 8,8 \end{aligned}$	-	mA
Ruhestrom lod		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0,0005 \\ & 0,0010 \\ & 0,0015 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 2,0 \\ & 4,0 \end{aligned}$	$\mu \mathrm{A}$


Spezifische Daten	$V_{D D}$	min.	typ.	max.	Einh.
Eingangsstrom $\mathbf{I}_{\mathbb{N}}$	15	-	$\pm 0,00001$	$\pm 0,3$	$\mu \mathrm{~A}$
Eingangskapazităt $\mathrm{C}_{\mathbb{I}}$	-	-	5,0	7,5	pF

Schaltverhalten bel $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$

Ausgangsanstiegszeit tim	5,0 10 15	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabfallzeit ${ }_{\text {tHL }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	200 100 80	ns
Verzógerungszeit tpur, ${ }_{\text {PHL }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	160 65 50	$\begin{aligned} & 300 \\ & 130 \\ & 100 \end{aligned}$	ns



Spezifische Daten	$V_{D D}$	min.	typ.	max.	Einh.
Ruhestrom $\mathrm{I}_{\mathrm{DD}}$	5,0	-	0,0005	1,0	
	10	-	0,0010	2,0	$\mu \mathrm{~A}$
Eingangsstrom $\mathrm{IIN}_{\mathrm{N}}$	15	-	0,0015	4,0	
Eingangskapazitāt $\mathrm{C}_{\mathrm{IN}}$	15	-	$\pm 0,00001$	$\pm 0,3$	$\mu \mathrm{~A}$

Schaltverhalten bei $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit it.H	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 180 \\ 90 \\ 65 \end{array}$	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	ns
Ausgangsabfalizeit the	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	100 50 40	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Verzógerungszeit $\mathbf{t}_{\text {PLH }} \mathbf{t}_{\text {PHL }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	115 55 40	$\begin{array}{r} 200 \\ 110 \\ 85 \end{array}$	ns

Anschlußbelegung

Yebrheitatabelig


$C$	$B_{0}$	$A_{\mathbf{a}}$	$S_{0}$	$\alpha>15$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1



## Zwei NAND-Gatter mit je 4 Eingängen

## Allgemeine Betriebskenngrößen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $V_{D D}$	$-0,5$ bis +18	V
Eingangsspannung $\mathrm{V}_{\mathrm{IN}}$	$-0,5$ bis $\mathrm{V}_{\mathrm{DD}}+0,5$	V
max. Eingangsstrom I (je AnschluB)	10	mA
Betriebstemperatur $\mathrm{T}_{\mathrm{A}}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\mathbf{s i g}}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Spezifische Daten		$\mathrm{V}_{\mathrm{DD}}$	$\min$.	typ.	max.	Einh.
Ausgangsspannung $\mathrm{V}_{\text {OL }}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	V
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	V
Eingangsspannung $V_{11}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 3,0 \\ & 4,0 \end{aligned}$	V
Eingangsspannung $V_{\text {IH }}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 3,5 \\ 7,0 \\ 11,0 \end{array}$	$\begin{aligned} & 2,75 \\ & 5,50 \\ & 8,25 \end{aligned}$	-	V
Ausgangsstrom $\mathrm{I}_{\mathrm{OH}}$	$\begin{aligned} & V_{\mathrm{OH}}=2,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=9,5 \mathrm{~V} \\ & V_{\mathrm{OH}}=13,5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5,0 \\ 5,0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & -2,1 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -4,2 \\ & -0.88 \\ & -2.25 \\ & -8.8 \end{aligned}$	-	mA
Ausgangsstrom lou	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=0,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=1,5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 1,1 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 0,88 \\ & 2,25 \\ & 8,8 \end{aligned}$	-	mA
Ruhestrom loo		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0,0005 \\ & 0,0010 \\ & 0,0015 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 2,0 \\ & 4,0 \end{aligned}$	$\mu \mathrm{A}$


Spezifische Daten	$V_{D D}$	min.	typ.	max.	Einh.
Eingangsstrom $\mathbb{I}_{\mathbb{N}}$	15	-	$\pm 0,00001$	$\pm 0,3$	$\mu \mathrm{~A}$
Eingangskapazitatt $\mathrm{C}_{\mathbb{N}}$	-	-	5.0	7.5	pF

Schaltverhalten bei $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit ${ }_{\text {T }}^{\text {TLH }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabfalizeit ${ }^{\text {THML }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Verzogerungszeit tru. $\mathrm{I}_{\text {PHL }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	125 50 40	$\begin{array}{r} 250 \\ 100 \\ 80 \end{array}$	ns




## Allgemeine Betriebskenngrößen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $V_{\text {do }}$	$-0,5$ bis +18	V
Eingangsspannung $V^{*}$ (	$-0,5 \mathrm{bis} \mathrm{V}_{00}+0.5$	V
Leckstrom I (je AnschluB)	10	mA
Betriebstemperatur $\mathrm{T}_{\mathrm{A}}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\text {stg }}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Sperifische Daten		$V_{D D}$	min.	typ.	max.	Einh.
Ausgangsspannung $\mathrm{V}_{\mathrm{ol}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	V
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	V
Eingangsspannung $\mathrm{V}_{\mathrm{H}}$.		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 3,0 \\ & 4,0 \end{aligned}$	v
Eingangsspannung $\mathrm{V}_{\mathrm{IH}}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	$\begin{array}{r} 3,5 \\ 7,0 \\ 11,0 \end{array}$	$\begin{aligned} & 2,75 \\ & 5,50 \\ & 8,25 \end{aligned}$	-	V
Ausgangsstrom $\mathrm{IOH}_{\mathrm{OH}}$	$\begin{aligned} & V_{\mathrm{OH}}=2,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -2,1 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -4,2 \\ & -0,88 \\ & -2,25 \\ & -8,8 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	mA
Ausgangsstrom $\mathrm{l}_{\mathrm{OL}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=0,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0,44 \\ & 1,1 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 0,88 \\ & 2,25 \\ & 8,8 \end{aligned}$	-	mA
Ruhestrom $\mathrm{l}_{00}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0,002 \\ & 0,004 \\ & 0,006 \end{aligned}$	$\begin{gathered} 4,0 \\ 8,0 \\ 16 \end{gathered}$	$\mu \mathrm{A}$


Spezifische Daten	$V_{D D}$	min.	typ.	max.	Einh.
Eingangsstrom $\mathrm{I}_{\mathbb{N}}$	15	-	$\pm 0,00001$	$\pm 0,3$	$\mu \mathrm{~A}$
Eingangskapazität $\mathrm{C}_{\mathbb{N}}$	-	-	5,0	7,5	pF
Tristate Reststrom $\mathrm{I}_{\mathrm{TL}}$	15	-	-	-	$\mu \mathrm{A}$

Schaltverhalten bei $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit $\mathrm{t}_{\text {Tu* }}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabfallszeit $\mathrm{t}_{\text {TKL }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Taktrequenz $f_{d}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2,0 \\ & 5,0 \\ & 7,0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 10 \\ & 14 \end{aligned}$	MHz
Taktimpulsbreite ${ }_{\text {WLL }}, \mathrm{t}_{\mathbf{W H}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 125 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 250 \\ 100 \\ 70 \end{array}$	-	ns
Taktimpulsanstiegs- und Abfallszeit timent ${ }_{\text {trun }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	$\begin{aligned} & 15 \\ & 5,0 \\ & 4,0 \end{aligned}$	$\mu \mathrm{S}$
Vorbereitungszeit $\mathrm{t}_{\mathbf{s} \text { u }}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 20 \\ & 10 \\ & 7.5 \end{aligned}$	40 20 15	ns
Hattezeit ${ }_{\text {\% }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	-	ns
Setimpulsbreite ${ }_{\text {t }}^{\text {W }}$ L	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	125 50 35	$\begin{array}{r} 250 \\ 100 \\ 70 \end{array}$	-	ns
Resetimpulsbreite ${ }_{\text {WH }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	125 50 35	$\begin{array}{r} 250 \\ 100 \\ 70 \end{array}$	-	ns


Spezifische Daten	$V_{\text {D }}$	min.	typ.	max.	Einh.
Verzögerungszeit $\mathrm{I}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ auf Q takten	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 175 \\ 75 \\ 50 \end{array}$	$\begin{aligned} & 350 \\ & 150 \\ & 100 \end{aligned}$	กs
Verzögerungszeit $\mathrm{t}_{\text {PHL }}$, $\mathrm{t}_{\text {PHLL }}$ auf $Q$ setzen	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 175 \\ 75 \\ 50 \end{array}$	$\begin{aligned} & 350 \\ & 150 \\ & 100 \end{aligned}$	ns
Verzögerungszeit $t_{\text {PHL }}, t_{\text {PHLL }}$, auf Q zurücksetzen	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 350 \\ 100 \\ 75 \end{array}$	$\begin{aligned} & 450 \\ & 200 \\ & 150 \end{aligned}$	

## Wahrheitstabelle

Eingănge				Ausgänge	
Takt	Daten	Reset	Set	Q	$\bar{Q}$
	0	0	0	0	1
	1	0	0	1	0
	$x$	0	0	NC	
X	$x$	1	0	0	1
$x$	$x$	0	1	1	0
x	$x$	1	1	1	1

$X=$ irrelevant
$N C=$ kein Wechsel


Der Johnson Dezimabähler-Teiler enthält 10 dezimal codierte Ausgänge und einen Ubertragsausgang. Der Zähler-Teiler ist selbststartend und kann mit 0-1.Flanken sowie 1.0 Flanken angesteuert werden.
Dabei kann der jeweik unbenutzte Eingang zum sperrren des Zähl•Teil-Vorgangs eingesetzt werden.

## Yahrbeitatabelle

	$\overline{C P}$	1		$\mathrm{P}_{1} \mathrm{bi}^{\prime} \mathrm{P}_{8}$	$Q_{0}$
x	x	1	1	0	1
$\mathcal{F}$	0	0	zasier	$r$ veiterte	(11t
1	L	0	zuher	$r$ veiterte	(11t
$\pm$	1	0	keine	Xnderant	
0	X	0	keine	Inderag	
		0	keine	Kaderab	
1	J	0	keine	Toderang	



2eitdiograme


## Kurziaten



## 4019 Vierfach 2-Kanal-Multiplexer/Demultiplexer

Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Spezilische Daten		$V_{D D}$	min.	typ.	max.	Einh.
Ausgangsspannung $\mathrm{V}_{\mathrm{OL}}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	$\checkmark$
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$v$
Eingangsspannung $\mathrm{V}_{\mathrm{IL}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 3,0 \\ & 4,0 \end{aligned}$	V
Eingangsspannung $V_{1 H}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 3,5 \\ 7,0 \\ 11,0 \end{array}$	$\begin{aligned} & 2,75 \\ & 5,50 \\ & 8,25 \end{aligned}$	-	$v$
Ausgangsstrom ${ }^{\text {IOH}}$	$\begin{aligned} & V_{\mathrm{OH}}=2,5 \mathrm{~V} \\ & V_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & V_{\mathrm{OH}}=9,5 \mathrm{~V} \\ & V_{\mathrm{OH}}=13,5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -2,1 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -4,2 \\ & -0,88 \\ & -2,25 \\ & -8,8 \end{aligned}$	- - -	mA
Ausgangsstrom tol	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0,44 \\ & 1,1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0,88 \\ & 2,25 \\ & 8,8 \end{aligned}$		mA
Ruhestrom ldo		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 0,0005 \\ & 0,0010 \\ & 0,0015 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 2,0 \\ & 4,0 \end{aligned}$	$\mu \hat{A}$

Schaltverhalten bei $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit trum	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabializeit the	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Verzogerungszeit $\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 160 \\ 65 \\ 50 \end{array}$	$\begin{aligned} & 300 \\ & 130 \\ & 100 \end{aligned}$	ns

## Vahtheitetaballe

$G 1$	$G 2$	1	2	$Q_{n}$
0	0	$x$	$x$	0
0	1	$x$	0	0
0	1	$x$	1	1
1	0	0	$x$	0
1	0	1	$x$	1
1	1	1	$x$	1
1	1	$x$	1	1
1	1	0	0	0



## Allgemeine BetriebskenngröBen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $V_{D D}$	$-0,5$ bis +18	V
Eingangsspannung $V_{I N}$	$-0,5$ bis $\mathrm{V}_{\mathrm{DD}}+0,5$	V
max. Eingangsstrom $I$ (je Anschlub)	10	mA
Betriebstemperatur $\mathrm{T}_{\mathrm{A}}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\text {stg }}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Spezifische Daten		$V_{D D}$	min.	typ.	max.	Einh.
Ausgangsspannung $\mathrm{V}_{\text {OL }}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	v
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	V
Eingangsspannung $\mathrm{V}_{\mathbf{I L}}$		$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$v$
Eingangsspannung $V_{1 H}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 3,5 \\ 7,0 \\ 11,0 \end{array}$	$\begin{aligned} & 2,75 \\ & 5,50 \\ & 8,25 \end{aligned}$	-	$v$
Ausgangsstrom $\mathrm{I}_{\mathrm{OH}}$	$\begin{aligned} & V_{\mathrm{OH}}=2,5 \mathrm{~V} \\ & V_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & V_{\mathrm{OH}}=9,5 \mathrm{~V} \\ & V_{\mathrm{OH}}=13,5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 5,0 \\ 5.0 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & -2,1 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -4,2 \\ & -0,88 \\ & -2,25 \\ & -8,8 \end{aligned}$	-	mA
Ausgangsstrom $\mathrm{l}_{\mathrm{OL}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=0,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=1,5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 1,1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0,88 \\ & 2,25 \\ & 8,8 \end{aligned}$	-	mA
Ruhestrom $\mathrm{I}_{\text {D }}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0,0005 \\ & 0,0010 \\ & 0,0015 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{A}$


Spezifische Daten	$V_{D D}$	min.	typ.	max.	Einh.
Eingangsstrom $I_{I N}$	15	-	$\pm 0,00001$	$\pm 0,3$	$\mu \mathrm{~A}$
Eingangskapazilăt $C_{\mathbb{N}}$	-	-	5,0	7,5	$\rho F$

Schaltverhaiten bei $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit trik	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	100 50 40	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabfailzeit $\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Verz ${ }^{\text {cherungszeit }} \mathrm{t}_{\text {PLH }}$, $\mathrm{T}_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 160 \\ 65 \\ 50 \end{array}$	$\begin{aligned} & 300 \\ & 130 \\ & 100 \end{aligned}$	ns




## Allgemeine Betriebskenngrößen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $\mathrm{V}_{\mathrm{DD}}$	$-0,5$ bis +18	V
Eingangsspannung $\mathrm{V}_{\mathrm{IN}}$	$-0,5$ bis $\mathrm{V}_{\mathrm{DO}}+0,5$	V
Leckstrom $\mathrm{I}($ je Anschluß $)$	10	mA
Betriebstemperatur $T_{A}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\mathrm{sl}}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Spezifische Daten		$V_{00}$	min.	typ.	max.	Einh.
Ausgengsspannung $\mathrm{V}_{\mathrm{OL}}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	V
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	-	V
Eingangsspannung $V_{\text {il }}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 3,0 \\ & 4,0 \end{aligned}$	V
Eingangsspannung $\mathrm{V}_{\mathrm{il}}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	$\begin{array}{r} 3,5 \\ 7.0 \\ 11,0 \end{array}$	$\begin{aligned} & 2,75 \\ & 5,50 \\ & 8,25 \end{aligned}$	-	V
Ausgangsstrom $\mathrm{l}_{\mathrm{OH}}$	$\begin{aligned} & V_{O H}=2,5 \mathrm{~V} \\ & V_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & V_{\mathrm{OH}}=9,5 \mathrm{~V} \\ & V_{\mathrm{OH}}=13,5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5,0 \\ 5,0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & -2,1 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -4,2 \\ & -0,88 \\ & -2,25 \\ & -8,8 \end{aligned}$		mA
Ausgangsstrom $\mathrm{I}_{\mathrm{OL}}$	$\begin{aligned} & v_{a}=0,4 \mathrm{~V} \\ & v_{\alpha}=0,5 \mathrm{~V} \\ & v_{\alpha}=1,5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 5,0 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0,44 \\ & 1,1 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 0,88 \\ & 2,25 \\ & 8,8 \end{aligned}$	-	mA
Ruhestrom ${ }_{\text {D }}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0,002 \\ & 0,004 \\ & 0,006 \end{aligned}$	$\begin{gathered} 4,0 \\ 8,0 \\ 16 \end{gathered}$	$\mu \mathrm{A}$


Spezifische Daten	$V_{D D}$	min.	typ.	max.	Einh.
Eingangsstrom $\mathrm{I}_{W}$	15	-	$\pm 0,00001$	$\pm 0,3$	$\mu \mathrm{~A}$
Eingangskapazitat $\mathrm{C}_{W}$	-	-	5,0	7,5	pF
Tristate Reststrom $\mathrm{T}_{\mathrm{W}}$	15	-	-	-	$\mu \mathrm{A}$

Schaltverhalten bei $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit ${ }_{\text {trum }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	100 50 40	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabfallszeit $\mathrm{t}_{\text {TMR }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Taktirequenz $f_{d}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3,0 \\ & 9,0 \\ & 13 \end{aligned}$	MHz
Taktimpulsbreite $\mathrm{t}_{\text {Wh }}, \mathrm{t}_{\text {WHM }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 165 \\ 55 \\ 38 \end{array}$	$\begin{array}{r} 330 \\ 110 \\ 75 \end{array}$	-	ns
Taktimpulsanstiegs-und Abfaliszeit $\mathrm{t}_{\text {TKL }},{ }_{\text {TLM }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	$\begin{aligned} & 15 \\ & 5.0 \\ & 4,0 \end{aligned}$	$\mu \mathrm{S}$
Vorbereitungszeit ${ }^{\text {m }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 70 \\ & 25 \\ & 17 \end{aligned}$	$\begin{array}{r} 140 \\ 50 \\ 35 \end{array}$	ns
Haltezeit $\mathrm{t}_{\mathrm{n}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 70 \\ & 25 \\ & 17 \end{aligned}$	$\begin{array}{r} 140 \\ 50 \\ 35 \end{array}$	-	ns
Setimpulsbreite $\mathrm{t}_{\mathrm{m}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 125 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 250 \\ 100 \\ 70 \end{array}$	-	ns
Resetimpulsbreite ${ }_{\text {W }}^{\text {WH }}$	5.0 10 15	125 50 35	$\begin{array}{r} 250 \\ 100 \\ 70 \end{array}$	-	ns


Spezifische Daten	$V_{00}$	min.	typ.	max.	Einh.
Verzögerungszeit $\mathrm{t}_{\text {Pur }}$, $\mathrm{L}_{\text {PTM }}$ auf Q takten	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	175 75 50	$\begin{aligned} & 350 \\ & 150 \\ & 100 \end{aligned}$	ns
Verzögenungszeit $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PHL }}$ auf Q setzen	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	175 75 50	$\begin{aligned} & 350 \\ & 150 \\ & 100 \end{aligned}$	ns
Verzögerungszeit $\mathrm{l}_{\text {PHL }}$, $\mathrm{l}_{\text {PHL }}$, auf Q zurücksetzen $^{\text {a }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 350 \\ 100 \\ 75 \end{array}$	$\begin{aligned} & 450 \\ & 200 \\ & 150 \end{aligned}$	

## Wahrheitstabelle




Allgemeine BetriebskenngröBen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $V_{\text {DO }}$	$-0,5$ bis +18	V
Eingangsspannung $V_{\mathrm{IN}}$	$-0,5$ bis +30	V
max. Strom I (je EingangsanschluB)	10	mA
max. Strom I (je AusgangsanschluB)	45	mA
Betriebstemperatur $\mathrm{T}_{\mathrm{A}}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\text {stg }}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

```
Alloteine tianteise
```





``` Iolgt sovond in Parallalbetrieb (Eigogace \(1 D\) ) ala auch in Seriegbetrieb
```




``` atelledigang \(R\) versebet.
```

Yahrheitstabellen

$0 \square$	1\%	C2	$1 \underline{\square}$		$Q_{\square}^{0+1}$
$\int 0$	0	0	X		0
$\int 0$	1	0	X	keine	linderungen
$\int 1$	0	0	$x$		$\bar{Q}_{n}$
$\int 1$	1	0	x		1
$\int x$	I	1	1		17
$\int x$	I	1	0		ID
\x	I	$x$	$x$	keine	Anderungen


0	$G 3$	$Q_{n}$
1	1	0
1	0	1
0	1	$Q_{n}$
0	0	$Q_{n}$


	Oo	
T/6	$0 \cdot$	14
R	02	14
,	03	15
*	DP3	12
$c$	001	1
P/3	Op,	10
$v_{s 3}$	Opo	



## Allgemeine Betriebskenngrößen

Spezifische Oaten	Bereich	Einh.
Versorgungsspannung $\mathrm{V}_{\mathrm{DO}}$	$-0,5$ bis +18	V
Eingangsspannung $\mathrm{V}_{\mathbf{W}}$	$-0,5$ bis $V_{\text {DO }}+0,5$	V
max. Eingangsstrom ( j A AnschluB)	10	mA
Betriebstemperatur $T_{A}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\mathrm{sco}}$	-65 bis + 150	${ }^{\circ} \mathrm{C}$

Schaltverhalten bei $C_{L}=50 \rho F$ und $T_{A}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit $\mathrm{t}_{\text {TH }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabfallszeit $\mathrm{t}_{\text {TML }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Taktrequenz $\mathrm{f}_{\boldsymbol{a}}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1,8 \\ & 4,5 \\ & 6,0 \end{aligned}$	$\begin{aligned} & 3,6 \\ & 9,0 \\ & 12 \end{aligned}$	MHz
Taktimpulsbreite $t_{\text {m }}, t_{\text {wh }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	130 55 40	$\begin{array}{r} 260 \\ 110 \\ 80 \end{array}$	-	ns
Taktimpulsanstiegs. und Abfaliszeit $\mathrm{t}_{\text {THL }} \cdot{ }^{\text {t }}$ THM	5,0 10 15	-	-	1,5 5 4	$\mu \mathrm{S}$
Vorbereitungszetit ${ }_{\text {su }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	110 40 25	$\begin{array}{r} 220 \\ 40 \\ 25 \end{array}$	ns

## Yehrlacitstabelle

$F$	$\mathrm{S}_{\mathrm{n}}$	$\mathbf{B}_{\mathrm{n}}$	$\chi_{\square}$
0	I	$\pi$	Ausgage abgetrennt
1	1	0	1
1	0	1	0
1	1	1	1
1	0	0	keine Xnderang



## Allgemeine Betriebskenngrößen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $\mathrm{V}_{\mathrm{DO}}$	$-0,5$ bis +18	V
Eingangsspannung $\mathrm{V}_{\mathrm{IN}}$	$-0,5$ bis $\mathrm{V}_{\mathrm{DO}}+0,5$	V
max. Eingangsstrom! (je AnschluB)	10	mA
Betriebstemperatur $T_{A}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $T_{r 0}$	-65 bis +150	${ }^{\circ}$

Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Spezifische Daten		$\mathrm{V}_{\mathrm{DO}}$	$\min$.	typ.	max.	Einh.
Ausgangsspannung $V^{( }$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0.05 \\ & 0,05 \end{aligned}$	V
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	-	V
Eingangsspannung $\mathrm{V}_{\text {IL }}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 3,0 \\ & 4,0 \end{aligned}$	V
Eingangsspannung $V_{1 H}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 3,5 \\ 7,0 \\ 11,0 \end{array}$	$\begin{aligned} & 2,75 \\ & 5,50 \\ & 8,25 \end{aligned}$	-	V
Ausgangsstrom ${ }^{\mathrm{OH}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=2,5 \mathrm{~V} \\ & \mathrm{O}_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=9,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=13,5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -1,36 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -3,2 \\ & -1 \\ & -2,6 \\ & -6,8 \end{aligned}$		mA
Ausgangsstrom $\mathrm{l}_{\mathrm{O}}$	$\begin{aligned} & v_{\mathrm{OL}}=0,4 \mathrm{~V} \\ & v_{\mathrm{o}}=0.5 \mathrm{~V} \\ & v_{\alpha}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0,44 \\ & 1,1 \\ & 3,0 \end{aligned}$	$\begin{gathered} 1 \\ 2,6 \\ 6.8 \end{gathered}$	-	mA
Ruhestroml ${ }_{\text {DO }}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0,01 \\ & 0,01 \\ & 0,01 \end{aligned}$	1 2 4	$\mu \mathrm{A}$


Spezifische Daten	$v_{\mathrm{DD}}$	min.	typ.	max.	Einh.
Eingangsstrom $\mathrm{I}_{\mathbb{N}}$	15	-	$\pm 0,00001$	$\pm 0,3$	$\mu \mathrm{~A}$
Eingangskapazität $\mathrm{C}_{\mathbb{N}}$	-	-	5,0	7,5	pF
Tristate Reststrom $\mathrm{I}_{\mathrm{TL}}$	15	-	$\pm 0,0001$	$\pm 1,0$	$\mu \mathrm{~A}$

Schaltverhalten bei $C_{L}=50 \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit ${ }^{1}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	100 50 40	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabrallszeit tor	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	100 50 40	200 100 80	ns
	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 300 \\ & 150 \\ & 120 \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \\ & 240 \end{aligned}$	ns
	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 225 \\ 85 \\ 55 \end{array}$	$\begin{aligned} & 450 \\ & 170 \\ & 110 \end{aligned}$	ns
Verzögerungszeit $t_{\text {PLH }}$, $\mathrm{tPHL}^{\text {(Steuereingang }} \mathbf{k}$ )	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{array}{r} 140 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 280 \\ 100 \\ 80 \end{array}$	ns
Verzögerungszeit $\mathrm{t}_{\text {PLH }} \cdot \mathrm{l}_{\text {P+KL }}$ (Erweiterungseingang)	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	--	$\begin{array}{r} 190 \\ 90 \\ 65 \end{array}$	$\begin{aligned} & 380 \\ & 180 \\ & 130 \end{aligned}$	ns
	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	80 35 25	$\begin{array}{r}160 \\ 70 \\ 50 \\ \hline\end{array}$	ns

## Betrieb des

Mehrfunktionsgatters 4048

Je nach Ansteuerung der drei binären Steuerleitungen $\mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\mathrm{b}}$ und $\mathrm{k}_{\mathrm{c}}$ können 8 verschiedene Logikfunktionen eingestellt werden, und zwar ODER, NOR, UND, NAND, ODER/UND, ODER/ NAND, UND/ODER und UND/NOR (siehe Wahrheitstabelle). Ein vierter Eingang $k_{d}$ ermöglicht eine Tristate-Steuerung des Ausganges, wodurch ein Anschluß an eine gemeinsame Busleitung möglich ist. Wenn $\mathbf{k}_{\mathrm{d}}$ high ist, wird der Ausgang freigegeben. Ist $\mathrm{k}_{\mathrm{d}}$ low, besitzt der Ausgang eine hohe Impedanz.

Der Erweiterungseingang (Pin 15) ermöglicht dem Anwender, die Anzahl der Gattereingãnge zu vergrößern. Beispielsweise können zwei 4048 zu einem Mehrfunktionsgatter mit 16 Eingängen kaskadiert werden. Wenn der Erweiterungseingang nicht verwendet wird, sollte er an Masse gelegt werden.

## Wahrheitstabelle

Ausgangsfunktion	Boole'sche Gleichung	Stevereingänge$\begin{array}{llll} k_{c} & k_{0} & k_{c} & k_{d} \end{array}$				Anschlue der
						nichtbenutzten Eingänge an
NOR	$J=\overline{A+B+C+D+E+F+G+H}$	0	0	0	1	$\mathrm{v}_{\text {SS }}$
ODER	$J=A+B+C+D+E+F+G+H$		0	1	1	$v_{s s}$
ODER/UND	$J=(A+B+C+D) \cdot(E+F+G+H)$		1	0	1	$v_{\text {ss }}$
ODER ${ }^{\text {a }}$ AND	$J=(\bar{A}+B+C+D) \cdot(E+F+G+H)$	0	1	1	1	$v_{\text {SS }}$
UND	$J=A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H$		0	0	1	$V_{\text {Do }}$
Nand	$J=\overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H}$		0	1	1	$v_{D D}$
UND/NOR	$J=\overline{(A \cdot B \cdot C \cdot D)+(E \cdot F \cdot G \cdot H)}$		1	0	1	$v_{D 0}$
UND/ODER	$J=(A \cdot B \cdot C \cdot D)+(E \cdot F \cdot G \cdot H)$		1	1	1	$v_{D 0}$
hochohmig		$x$	$x$	$\times$	0	X = irrelevant



## Allgemeine Betriebskenngrößen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $V_{D O}$	$-0,5$ bis +18	V
Eingangsspannung $V_{I N}$	$-0,5$ bis $+0,30$	V
max. Strom I (je EingangsanschluB)	10	mA
max. Strom I (je Ausgangsanschlu8)	45	mA
Betriebstemperatur $T_{A}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\text {sig }}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Spezifische Daten		$V_{\text {D }}$	min.	typ.	max	Einh.
Ausgangsspannung $\mathrm{V}_{\mathrm{OL}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	V
Eingangsspannung $\mathrm{V}_{\mathrm{iL}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 2.5 \end{aligned}$	V
Eingangsspannung $\mathrm{V}_{\mathbf{I H}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4,0 \\ 8,0 \\ 12,5 \end{array}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	V
Ausgangsstrom $\mathrm{IOH}_{\mathrm{OH}}$	$\begin{aligned} & V_{\mathrm{OH}}=2,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=9,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=13,5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -1,25 \\ - \\ -1,3 \\ -3,75 \end{gathered}$	$\begin{aligned} & -2.5 \\ & -2.6 \\ & -10 \end{aligned}$	-	mA
Ausgangsstrom lo.	$\begin{aligned} & V_{O L}=0,4 \mathrm{~V} \\ & V_{O L}=0,5 \mathrm{~V} \\ & V_{O L}=1,5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 0,2 \\ 8,0 \\ 24 \end{array}$	$\begin{gathered} 6.0 \\ 16 \\ 40 \end{gathered}$	-	mA
Ruhestrom $\mathrm{I}_{\text {D }}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 0.002 \\ & 0,004 \\ & 0.006 \end{aligned}$	$\begin{gathered} 4.0 \\ 8.0 \\ 16 \end{gathered}$	$\mu \mathrm{A}$



Spezifische Daten	$V_{D D}$	min.	typ.	max.	Einh.
Eingangsstrom $\mathrm{I}_{\mathbb{N}}$	15	-	$\pm 0,00001$	$\pm 0,3$	$\mu \mathrm{~A}$
Eingangskapazităt $\mathcal{C}_{\mathbb{I N}}$	-	-	10	20	pF
Tristate Resistrom $\mathrm{I}_{\mathrm{K}}$	15	-	-	-	$\mu \mathrm{A}$

Schaltverhalten bei $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszein ${ }_{\text {itur }}$	5,0 10 15	-	100 50 40	160 80 60	ns
Ausgangsabiallzeit ${ }^{\text {THL }}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	40 20 15	60 40 30	ns
Verzōgerungszeit $\mathrm{t}_{\text {PUH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{r} 140 \\ 80 \\ 60 \end{array}$	ns
Verzögerungszeit $\mathrm{P}_{\text {PhL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	40 20 15	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	ns

Anschlußbelegung 4049


Anschlußbelegung 4050

$2 \square^{10}$

$7 \square^{6}$


Allgemeine BetriebskenngröBen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $\mathrm{V}_{\mathrm{DO}}$	$-0,5$ bis +18	V
Eingangsspannung $V_{\text {IN }}$	$-0,5$ bis $V_{D O}+0,5$	V
max. Eingangsstrom ( (e AnschluB)	10	mA
Betriebstemperatur $T_{A}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\text {stg }}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

## Allueneine Hinveise


 Adresse dekodiert, d.b. in dea miederohaigen neINM-2atand gesebaltet verden.




 megatio ceten $\mathrm{D}_{5 S} v a r d e \mathrm{a}$ 。

## Vabrbeltatabelle

61	2	1	nelNn-Zastand für
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	$x$	$x$	keliger
(alle Scbaltor bocbohmig)			

## Anschlußbelegung



## Allgemeine BetriebskenngröBen

Spezifische Daten	Sereich	Einh.
Versorgungsspannung $V_{D O}$	$-0,5$ bis +18	V
Eingangsspannung $V_{I N}$	$-0,5$ bis $V_{D O}+0,5$	V
max. Eingangsstrom 1 (je AnschluB)	10	mA
Betriebstemperatur $\mathrm{T}_{\mathrm{A}}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\text {sig }}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

## Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C}$

Spezifische Daten		$V_{D D}$	min.	typ.	max.	Einh.
Ausgangsspannung $\mathrm{V}_{\mathrm{OL}}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	V
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	V
Eingangsspannung $V_{11}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 2,0 \\ & 2,5 \end{aligned}$	V
Eingangsspannung $\mathrm{V}_{1+}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	$\begin{array}{r} 4,0 \\ 8,0 \\ 12,5 \end{array}$	$\begin{aligned} & 2,75 \\ & 5,50 \\ & 8,25 \end{aligned}$	-	V
Ausgangsstrom ${ }_{\text {OH }}$	$\begin{aligned} & V_{\mathrm{OH}}=2,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=9,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=13,5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -2,1 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -4,2 \\ & -0,88 \\ & -2,25 \\ & -8,8 \end{aligned}$	- - -	mA
Ausgangsstrom $\mathrm{l}_{\mathrm{OL}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}}=0,4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=0,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=1,5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 1,1 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 0,88 \\ & 2,25 \\ & 8.8 \end{aligned}$		mA
Ruhestrom IDD		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0,0005 \\ & 0,0010 \\ & 0,0015 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 2,0 \\ & 4,0 \end{aligned}$	$\mu \mathrm{A}$


Spezifische Daten	$V_{D D}$	min.	typ.	max.	Einh.
Eingangsstrom $\mathrm{I}_{\mathrm{IN}}$	15	-	$\pm 0,00001$	$\pm 0,3$	$\mu \mathrm{~A}$
Eingangskapazitat $\mathrm{C}_{\mathrm{IN}}$	-	-	5,0	7.5	pF

Schaltverhalten bel $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit tim	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	100 50 40	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabfalizeit ${ }_{\text {the }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Verzögerungszeit tinh trus	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	65 40 30	125 75 55	ns

## Anschlußbelegung

 Vier Exklusiv-NOR-Gatter mit je 2 Eingängen

## Allgemeine Betriebskenngrößen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $V_{D O}$	$-0,5$ bis +18	$V$
Eingangsspannung $V_{I N}$	$-0,5$ bis $V_{D O}+0,5$	V
max. Eingangsstrom $I$ (je AnschluB)	10	mA
Betriebstemperatur $T_{A}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $T_{\text {alg }}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

Elektrische Elgenschaften bei $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Spezifische Daten		$V_{D D}$	min.	typ.	max.	Einh.
Ausgangsspannung $\mathrm{V}_{\mathrm{OL}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	V
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	$\begin{array}{r} 4,95 \\ 9.95 \\ 14,95 \end{array}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	V
Eingangsspannung $\mathbf{V}_{\text {il }}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\checkmark$
Eingangsspannung $V_{\mathbb{N}}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	$\begin{array}{r} 3.5 \\ 7.0 \\ 11,0 \end{array}$	$\begin{aligned} & 2,75 \\ & 5,50 \\ & 8,25 \end{aligned}$	-	V
Ausgangsstrom $\mathrm{I}_{\mathrm{OH}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=2,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=9,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=13,5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 5,0 \\ 5,0 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & -2,1 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -4,2 \\ & -0,88 \\ & -2,25 \\ & -8,8 \end{aligned}$	-	mA
Ausgangsstrom $\mathrm{I}_{\mathrm{OL}}$	$\begin{aligned} & V_{\mathrm{OL}}=0,4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=0,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=1,5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 5,0 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0,44 \\ & 1,1 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 0,88 \\ & 2,25 \\ & 8,8 \end{aligned}$	-	mA
Ruhestrom loo		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	0,0005 0,0010   0,0015	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{A}$


| Spezifische Daten | $V_{D 0}$ | min. | typ. | max. | Einh. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Eingangsstrom $I_{\mathbb{N}}$ | 15 | - | $\pm 0,00001$ | $\pm 0,3$ | $\mu \mathrm{~A}$ |
| Eingangskapazităt $\mathrm{C}_{\mathrm{iN}}$ | - | - | 5,0 | 7,5 | pF |

Schaltverhalten bei $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit	$\begin{array}{r} 5,0 \\ 10 \\ 15 \end{array}$	-	100 50 40	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabfallzeit thi	$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	-	100 50 40	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	175 75 50	$\begin{aligned} & 350 \\ & 150 \\ & 100 \end{aligned}$	ns

Anschlußbelegung 4070


AnschluBbelegung


## Zwei OR-Gatter mit je 4 Eingängen

Drei AND-Gatter mit je 3 Eingängen
Drei OR-Gatter mit je 3 Eingängen

Vier AND-Gatter mit je 2 Eingängen
Zwei AND-Gatter mit je 4 Eingängen

Allgemeine BetriebskenngröBen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $V_{D D}$	$-0,5$ bis +18	V
Eingangsspannung $V_{i N}$	$-0,5$ bis $V_{D D}+0,5$	V
max. Eingangsstrom $I$ (je AnschluB)	10	mA
Betriebstemperatur $\mathrm{T}_{\mathrm{A}}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\mathbf{3 g}}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Spezifische Daten		$V_{D D}$	min.	typ.	max.	Einh.
Ausgangsspannung $\mathrm{V}_{\text {OL }}$		5,0 10 15	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	$V$
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$v$
Eingangsspannung $V_{\text {IL }}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 3,0 \\ & 4,0 \end{aligned}$	$v$
Eingangsspannung $V^{\text {IH }}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 3.5 \\ 7.0 \\ 11.0 \end{array}$	$\begin{aligned} & 2.75 \\ & 5,50 \\ & 8,25 \end{aligned}$	-	$v$
Ausgangsstrom ${ }_{\text {IOM }}$	$\begin{aligned} & V_{\mathrm{OH}}=2.5 \mathrm{~V} \\ & V_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & V_{\mathrm{OH}}=9,5 \mathrm{~V} \\ & V_{\mathrm{OH}}=13,5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -2,1 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -4,2 \\ & -0,88 \\ & -2,25 \\ & -8,8 \end{aligned}$	-	mA
Ausgangsstrom ${ }^{\text {a }}$ O	$\begin{aligned} & V_{\mathrm{OL}}=0,4 \mathrm{~V} \\ & V_{\mathrm{OL}}=0,5 \mathrm{~V} \\ & V_{\mathrm{OL}}=1,5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 0.44 \\ & 1,1 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 0,88 \\ & 2,25 \\ & 8,8 \end{aligned}$	-	mA
Ruhestrom		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 0,0005 \\ & 0,0010 \\ & 0,0015 \end{aligned}$	1,0 2.0 4,0	$\mu \mathrm{A}$


| Spezifische Daten | $V_{D D}$ | min. | yp. | max. | Einh. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Eingangsstrom $I_{\mathbb{N}}$ | 15 | - | $\pm 0,00001$ | $\pm 0,3$ | $\mu \mathrm{~A}$ |
| Eingangskapazitảt $C_{\mathbb{I N}}$ | - | - | 5,0 | 7,5 | pF |

Schaltverhalten bei $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit ${ }_{\text {t }}^{\text {THH }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabfallzeit tint	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Verzogerungszait $\mathrm{t}_{\text {PLH }}$, $\mathrm{t}_{\text {PHL }}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{array}{r} 160 \\ 65 \\ 50 \end{array}$	$\begin{aligned} & 300 \\ & 130 \\ & 100 \end{aligned}$	ns

Anschlußbelegung 4071


Anschlußbelegung 4072


$n$
$n$
0
$\forall$
4075


ELECTRICAL CHARACTERISTICS

Charmetoristic	Symbol	Voo Vde	${ }^{\text {Tlow* }}$		$25^{\circ} \mathrm{C}$			$T_{\text {hig }}{ }^{*}$		Unit
			Min	Max	Min	Typ	Max	Min	Maz	
Output Votrage $V_{i n}=V_{D D} \text { or } 0$	VOL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	-	0 0 0	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	Vac
"1" Levet $V_{\text {in }}=0 \text { or } V_{D D}$	VOH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$	-	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \end{array}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$	-	Vde
Input Voltrge" $" 0 "$ Level   (Vo 4.5 or 0.5 Voc$)$    iVo 9.0 or 1.0 Vdel    iVo 13.5 or 1.5 Voc )	VIL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	-	-	$\begin{array}{r} 1.5 \\ 3.0 \\ 4.0 \\ \hline \end{array}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	Vde
"1" Livel   ( $V_{0} \cdot 0.5$ or 45 Vad )   (VO 1.0 or 9.0 Vad$)$   1Vo - 1.5 or 13.5 Vdel	$\mathrm{V}_{1 H}$	$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 3.5 \\ 7.0 \\ 110 \\ \hline \end{array}$	-	$\begin{array}{r} 3.5 \\ 7.0 \\ 11.0 \end{array}$	-	-	$\begin{array}{r} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{array}$	-	Vde
$\begin{array}{\|ll} \hline \text { Output Drive Curreni (AL Devicel } \\ \text { (VOH } & 2.5 \mathrm{Vocl} \\ \text { (VOH } & \text { Source } \\ \text { (VOH } & =9.5 \mathrm{Vdcl} \\ \mathrm{VO}_{\mathrm{OH}} & =13.5 \mathrm{Vacl} \\ & \end{array}$	1 OH	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & -3.0 \\ & -0.64 \\ & -1.8 \\ & -4.2 \\ & \hline \end{aligned}$	-	$\begin{array}{r} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \\ \hline \end{array}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -2.25 \\ & -8.8 \\ & \hline \end{aligned}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \\ \hline \end{gathered}$		made
$\begin{aligned} & (\mathrm{VOL}=0.4 \mathrm{Vdc}) \quad \text { sink } \\ & (\mathrm{VOL}=0.5 \mathrm{Vdc}) \\ & (\mathrm{VOL}=1.5 \mathrm{Vac}) \end{aligned}$	10 L	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.64 \\ 1.5 \\ 4.2 \end{gathered}$	-	$\begin{aligned} & 0.51 \\ & 1.3 \\ & 3.4 \end{aligned}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \\ \hline \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$	-	madc
Output Driwe Curtent (CL/CP Dovice)   $1 \mathrm{VOH}=2.5 \mathrm{Vac})$   Source   $\left(\mathrm{VOH}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$   ( $\mathrm{VOH}=9.5 \mathrm{Vdc}$ )   ( $\mathrm{VOH}=13.5 \mathrm{Vacl}$	IOH	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & -2.5 \\ & -0.52 \\ & -1.3 \\ & -3.8 \end{aligned}$	-	$\begin{aligned} & -2.1 \\ & -0.44 \\ & -1.1 \\ & -3.0 \end{aligned}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -2.25 \\ & -8.8 \end{aligned}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	made
$\begin{aligned} & \left(\mathrm{VOL}_{\mathrm{OL}}=0.4 \mathrm{~V} \mathrm{VC}\right) \quad \text { Sink } \\ & \left(\mathrm{VOL}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{VOL}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \end{aligned}$	${ }^{1} \mathrm{OL}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.52 \\ 1.3 \\ 3.6 \end{gathered}$	-	$\begin{gathered} 0.44 \\ 1.1 \\ 3.0 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	$-$	made
Input Current (AL Oevice)	$1{ }_{\text {in }}$	15	-	101	-	1 10.00001	$\pm 0.1$	-	:1.0	HAdC
Input Curront ICL/CP Devee)	In	15	-	$\pm 0.3$	-	120.00001	$\pm 0.3$	-	$\pm 1.0$	Hade
Input Capseitance $\left(v_{i n}=0\right)$	$\mathrm{C}_{\text {in }}$	-		-	-	50	7.5	-	-	DF
Qursicent Current (AL Devict) (Per Package)	100	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.25 \\ & 0.50 \\ & 1.00 \\ & \hline \end{aligned}$	-	0.0005   0.0010   0.0015	$\begin{aligned} & 0.25 \\ & 0.50 \\ & 1.00 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 7.5 \\ & 15 \\ & 30 \\ & \hline \end{aligned}$	\#Ade
Quisscent Current (CL/CP Device) (Par Package)	'00	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	-	0.0005   0.0010   0.0015	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 7.5 \\ & 15 \\ & 30 \end{aligned}$	made
Tota Supply Current" $\dagger$   IDynemic dius Outement.   Per Packagel   iCL. 50 pF, on all ouiputs, all buffers switehingl	${ }^{1} \mathrm{~T}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$								made
Hystureis Voluge   (Pige 2, 5, 9, 12, mad high)	$\mathrm{V}_{\mathrm{H}}{ }^{*}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.29 \\ & 0.39 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.65 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.25 \\ & 0.33 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.38 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.60 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.20 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.60 \\ & 0.90 \\ & \hline \end{aligned}$	Vac
Thremand Voltige (Plise 2, 5, 9, 12, metd nigh) Powltw-Going	$\mathrm{V}_{\mathrm{T}}+$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.90 \\ & 3.06 \\ & 4.12 \end{aligned}$	$\begin{aligned} & 4.15 \\ & 8.75 \\ & 9.16 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.80 \\ & 2.95 \\ & 4.02 \end{aligned}$	$\begin{aligned} & 2.70 \\ & 4.43 \\ & 8.03 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.05 \\ & 6.65 \\ & 9.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.70 \\ & 2.85 \\ & 3.92 \end{aligned}$	$\begin{aligned} & 4.05 \\ & 8.85 \\ & 9.05 \\ & \hline \end{aligned}$	Vate
Nepertive-Golas	$\mathrm{V}_{\mathrm{T}-}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.83 \\ & 2.70 \\ & 3.80 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.76 \\ & 8.18 \\ & 8.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.63 \\ & 2.70 \\ & 3.69 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.44 \\ & 4.06 \\ & 5.53 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.68 \\ & 8.08 \\ & 8.30 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.63 \\ & 2.60 \\ & 3.70 \end{aligned}$	$\begin{aligned} & 3.68 \\ & 8.08 \\ & 8.30 \\ & \hline \end{aligned}$	Vde


Dutput Fall Time	TTHL	5.0	-	100	200	nt
		10	-	50	100	
Propagation Delay Time		15	-	40	80	
		tPLH, TPHL	5.0	-	125	250
		10	-	50	100	

FIGURE I - SWITCHING TIME TEST CIRCUIT ANO WAVE FORMS


FIGURE 2 - TYPICAL SCHMITT TRIGGER APPLICATIONS


Anschlußbelegung


## Allgemeine Betriebskenngrößen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $\mathrm{V}_{\mathrm{DO}}$	$-0,5$ bis +18	V
Eingangsspannung $V^{\text {N }}$	$-0,5$ bis $V_{\text {DO }}+0,5$	V
max. Eingangsstrom I (je Anschius)	10	mA
Betriebstemperatur $T_{A}$	-40 bis + 85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{\text {stp }}$	-65 bis + 150	${ }^{\circ} \mathrm{C}$

Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Spezifische Daten		$V_{D 0}$	min.	typ.	max.	Einh.
Ausgangsspannung $\mathrm{V}_{\mathrm{ol}}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	V
Ausgangsspannung $\mathrm{V}_{\text {OH }}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4,95 \\ 5,95 \\ 14,95 \end{array}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	-	V
Eingangsspannung $\mathrm{V}_{\text {IL }}$		$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 3,0 \\ & 4,0 \end{aligned}$	V
Eingangsspannung $V_{\text {G }}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 3,5 \\ 7,0 \\ 11,0 \end{array}$	$\begin{aligned} & 2,75 \\ & 5,50 \\ & 8,25 \end{aligned}$	-	V
Ausgangsstrom $\mathrm{I}_{\mathrm{OH}}$	$\begin{aligned} & V_{\mathrm{OH}}=2,5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & V_{\mathrm{OH}}=9.5 \mathrm{~V} \\ & V_{\mathrm{OH}}=13,5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5,0 \\ 5,0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & -1,36 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -3.2 \\ & -1,0 \\ & -2,6 \\ & -6.8 \end{aligned}$	-	mA
Ausgangsstrom $\mathrm{I}_{\mathrm{O}}$	$\begin{aligned} & v_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & v_{\mathrm{O}}=0.5 \mathrm{~V} \\ & v_{\mathrm{a}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 1.1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.6 \\ & 6.8 \end{aligned}$	-	mA
Ruhestrom $I_{\text {D }}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.02 \\ & 0.02 \\ & 0.02 \end{aligned}$	4 8 16	$\mu \mathrm{A}$


Spezifische Daten	$V_{D D}$	min.	typ.	max.	Einh.
Eingangsstrom $\mathbb{I}_{\mathbb{N}}$	15	-	$\pm 0,00001$	$\pm 0,3$	$\mu \mathrm{~A}$
Eingangskapazităt $\mathbb{C}_{\mathbb{N}}$	-	-	5,0	7,5	pF
Tristate Reststrom $\mathrm{I}_{\mathrm{N}}$	15	-	-	-	$\mu \mathrm{A}$

Schaltverhalten bei $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit tirn	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	--	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	200 100 80	ns
Ausgangsabfallszeit $t_{\text {tral }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Taktirequenz $f_{\text {el }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 3,5 \\ 6 \\ 8 \end{array}$	7 12 16	MHz
Taktimpulsbreite ${ }_{\text {whe }}, \mathbf{t}_{\text {wh }}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	65 30 20	$\begin{array}{r} 130 \\ 60 \\ 40 \end{array}$	-	ns
Taktimpulsanstiegs- und Abfallszeit $\mathrm{t}_{\text {THL }}, \mathrm{t}_{\text {TLH }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	-	15 15 15	$\mu s$
Vortereitungszeit	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{array}{r} 20 \\ 10 \\ 0 \end{array}$	40 20 10	ns
Haltereit ${ }_{\text {h }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	40 20 15	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	-	ns
Eingangsimpulsbreite für $\overline{C L E A R}^{\text {twh }}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	50 25 20	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	-	ns
CLEAR Erholungszeit ${ }^{\text {rem }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	0 0 0	40 15 10	กs
Verzögerungszeit $t_{\text {PLH }} \mathrm{l}_{\text {PA+L }}$ (Takt zu Ausgang)	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{array}{r} 150 \\ 70 \\ 50 \end{array}$	$\begin{aligned} & 300 \\ & 140 \\ & 100 \end{aligned}$	กs
Verzöqerungszeit $t_{\text {PHL }}$ CLEARzu Ausgang	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	-	100 50 40	200 100 80	ns

Wahrheitstabelle

Eingänge			
Takt	D	$\overline{\text { CLEAR }}$	Ausgang
			$Q$
	0	1	0
	1	1	1
	$x$	1	$N C$
		0	0

$$
\begin{aligned}
& X=\text { irrelevant } \\
& N C=\text { kein Wechsel }
\end{aligned}
$$

Funktionsbeschreibung Dieser Baustein enthält 6 flankengetriggerte D-Flipflops mit sechs Daten-Eingängen und einem gemeinsamen Takt-Eingang sowie einem gemeinsamen Lösch-Eingang.

Die Daten an den $D$-Eingängen ( $D_{1}$ bis $D_{6}$ ) werden zu den Ausgängen ( $Q_{1}$ bis $Q_{6}$ ) bei der positiven Flanke des Taktimpulses an Anschluß 9 übertragen, wenn sich Anschluß 1 (CLEAR) auf high befindet. Wird der CLEAR-Eingang auf low gebracht, so werden alle Flipflops auf low gesetzt, unabhängig vom Zustand des Takteinganges und der Dateneingänge.

## Anschlußbelegung



## Allgemeine Betriebskenngrößen

Spezifische Daten	Bereich	Einh.
Versorgungsspannung $\mathrm{V}_{\mathrm{DO}}$	$-0,5$ bis +18	V
Eingangsspannung $\mathrm{V}_{\mathrm{IN}}$	$-0,5$ bis $\mathrm{V}_{\mathrm{DO}}+0,5$	V
max. Eingangsstrom $/(j e$ AnschluB)	10	mA
Betriebstemperatur $\mathrm{T}_{\mathrm{A}}$	-40 bis +85	${ }^{\circ} \mathrm{C}$
Lagerungstemperatur $\mathrm{T}_{319}$	-65 bis +150	${ }^{\circ} \mathrm{C}$

Elektrische Eigenschaften bei $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Spezifische Daten		$V_{00}$	min.	typ.	max.	Einh.
Ausgangsspannung $\mathrm{V}_{\mathrm{o}}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	V
Ausgangsspannung $\mathrm{V}_{\mathrm{OH}}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	$\begin{array}{r} 4,95 \\ 9,95 \\ 14,95 \end{array}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	V
Eingangsspannung $\mathrm{V}_{\mathrm{LL}}$		$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 2,25 \\ & 4,50 \\ & 6,75 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 3,0 \\ & 4,0 \end{aligned}$	V
Eingangsspannung $V_{1 H}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 3,5 \\ 7,0 \\ 11,0 \\ \hline \end{array}$	$\begin{array}{r} 2,75 \\ 5,50 \\ 8,25 \\ \hline \end{array}$	-	V
Ausgangsstrom ${ }_{\text {O }}{ }^{\text {O }}$	$\begin{aligned} & V_{\mathrm{OH}}=2,5 \mathrm{~V} \\ & V_{\mathrm{OH}}=4,6 \mathrm{~V} \\ & V_{\mathrm{OH}}=9,5 \mathrm{~V} \\ & V_{\mathrm{OH}}=13,5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5,0 \\ 5,0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & -2,1 \\ & -0,44 \\ & -1,1 \\ & -3,0 \end{aligned}$	$\begin{aligned} & -4,2 \\ & -0,88 \\ & -2,25 \\ & -8,8 \end{aligned}$	-	mA
Ausgangsstrom $\mathrm{l}_{\text {a }}$	$\begin{aligned} & v_{\mathrm{a}}=0.4 \mathrm{~V} \\ & v_{\mathrm{oa}}=0.5 \mathrm{~V} \\ & v_{\mathrm{ot}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0,44 \\ & 1,1 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 0,88 \\ & 2,25 \\ & 8,8 \\ & \hline \end{aligned}$	-	mA
Ruhestrom $\mathrm{I}_{00}$		$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0,005 \\ & 0,010 \\ & 0,015 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$	$\mu \mathrm{A}$


Spezifische Daten	$V_{D D}$	min.	typ.	max.	Einh.
Eingangsstrom $\mathrm{I}_{\mathrm{N}}$	15	-	$\pm 0,00001$	$\pm 0,3$	$\mu \mathrm{~A}$
Eingangskapazitat $\mathrm{C}_{\mathbf{W}}$	-	-	5	7,5	pF
Tristate Reststrom In	15	-	-	-	$\mu \mathrm{A}$

## Schaltverhalten bei $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ und $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Ausgangsanstiegszeit $t_{\text {TH }}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Ausgangsabfallszeit $\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	ns
Taktfrequenz ${ }_{\text {d }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2,0 \\ & 5,0 \\ & 6,5 \end{aligned}$	$\begin{array}{r} 7,0 \\ 12,0 \\ 15,5 \end{array}$	MHz
Taktimpuisbreite ${ }_{\text {w }}{ }^{\prime}, t_{\text {WH }}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 75 \\ & 45 \\ & 35 \end{aligned}$	$\begin{array}{r} 150 \\ 90 \\ 70 \end{array}$	-	ns
Taktimpulsanstiegs- und Ablaliszeit $\mathrm{t}_{\text {THL }}, \mathrm{t}_{\text {TH/ }}$	$\begin{gathered} 5,0 \\ 10 \\ 15 \end{gathered}$	-	-	15 5 4	$\mu \mathrm{S}$
Vorbereitungszeit ${ }_{\text {s }}$ u	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 20 \\ 10 \\ 0 \end{array}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	ns
Haltezeit ${ }_{\text {n }}$	$\begin{aligned} & 5,0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	-	ns
$\overline{\text { Reset Emolungszeit } \mathrm{t}_{\text {rem }} \text { m }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	125 50 40	$\begin{array}{r} 250 \\ 100 \\ 80 \end{array}$	-	ns
Resetimpulsbreite ${ }^{\text {m }}$.	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	100 50 40	$\begin{array}{r} 200 \\ 100 \\ 80 \end{array}$	-	ns

## Wahrheitstabelle

Eingänge			Ausgang
Takt	Daten	$\overline{\text { Reset }}$	0
	0	1	0
	1	1	1
	$x$	1	$N C$

$X=$ irrelevant
$\mathrm{NC}=$ kein Wechsel

Funktionsbeschreibung Bei normalem Betrieb muß Anschluß 1 auf high liegen. Zu speichernde Daten werden den D-Eingängen zugeführt. Bei der positiven Flanke des Taktes werden die Informationen an den D-Eingängen intern gespeichert und erscheinen an den entsprechenden Q-Ausgängen.

Wird Anschluß 1 auf Masse gelegt, gehen alle Ausgänge in den low-Zustand.

Dieser Baustein wird zur gleichzeitigen Speicherung von sechs Informationsbits verwendet.

Anschlußbelegung


ELECTRICAL CHARACTERISTICS

Chapseteristic	Symbor	$\begin{aligned} & \text { Voo } \\ & \text { Vote } \end{aligned}$	${ }^{\text {Tow }}$ *		$25^{\circ} \mathrm{C}$			$T_{\text {minh }}$		Unit
			Min	Max	Min	Typ	Max	Min	M07	
	VOL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	Vdc
	V OH	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \end{array}$	-	$\begin{array}{r} 4.95 \\ 9.85 \\ 14.95 \end{array}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \\ & \hline \end{aligned}$	-	Vde
	VIL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 40 \end{aligned}$	-	$\begin{array}{r} 2.25 \\ 4.50 \\ 6.75 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	- - -	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$V \mathrm{Vds}$
	ViH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 3.5 \\ 7.0 \\ 11.0 \end{array}$	$\overline{-}$	$\begin{array}{r} 3.5 \\ 7.0 \\ 11.0 \end{array}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{array}{r} 3.5 \\ 7.0 \\ 11.0 \end{array}$	-	Vdc
$\begin{aligned} & \text { Outpue Orive Current (AL Owvict } \\ & \text { iVOH }=2.5 \mathrm{Vdcl} \quad \text { Source } \\ & (\mathrm{VOH}=4.6 \mathrm{Vdc}) \\ & (\mathrm{VOH}=9.5 \mathrm{Vdc}) \\ & \left.\mathrm{VOH}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) \end{aligned}$	${ }^{\mathrm{IOH}}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.2 \\ & -0.25 \\ & -0.62 \\ & -1.8 \end{aligned}$	-	$\begin{array}{r} -1.0 \\ -0.2 \\ -0.5 \\ -1.5 \\ \hline \end{array}$	$\begin{array}{r} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \\ \hline \end{array}$	-	$\begin{aligned} & -0.1 \\ & -0.14 \\ & -0.35 \\ & -1.1 \\ & \hline \end{aligned}$		made
	${ }^{1} \mathrm{OL}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	0.51 1.3 3.4	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	0.36 0.9 2.4	-	madc
	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.0 \\ -0.2 \\ -0.5 \\ -1.4 \end{array}$	-	$\begin{gathered} -0.8 \\ -0.16 \\ -0.4 \\ -1.2 \end{gathered}$	$\begin{array}{r} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \\ \hline \end{array}$	-	$\begin{aligned} & -0.6 \\ & -0.12 \\ & -0.3 \\ & -1.0 \end{aligned}$	-	made
$\begin{aligned} & 1 \mathrm{VOL}=0.4 \mathrm{Vdcl} \quad \text { Sink } \\ & \mathrm{iVOL}_{\mathrm{OL}}=0.6 \mathrm{Vdcl} \\ & \mathrm{iVOL}_{\mathrm{OL}}=1.5 \mathrm{Vdel} \\ & \hline \end{aligned}$	${ }^{1} \mathrm{OL}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.52 \\ & 1.3 \\ & 3.6 \\ & \hline \end{aligned}$	-	$\begin{array}{r} \hline 0.44 \\ 1.1 \\ 3.0 \\ \hline \end{array}$	$\begin{aligned} & 0.88 \\ & 2.25 \\ & 8.8 \\ & \hline \end{aligned}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$	-	madc
Input Current (AL Devicel	1 in	15	-	$\pm 0.1$	-	$\pm 0.00001$	$\pm 0.1$	-	210	HAde
input Cursont (CL/CP Device)	1 in	15	-	$\pm 03$	-	$\pm 0.00001$	$\pm 0.3$	-	11.0	HAdc
$\begin{aligned} & \text { Input Capecitance } \\ & \text { iV in }-01 \end{aligned}$	$\mathrm{C}_{\text {in }}$	-	-	-	-	50	7.5	-	-	pF
Qurscent Curtent (AL. Device) (Per Package)	100	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{array}{r} 150 \\ 300 \\ 600 \\ \hline \end{array}$	MAde
Quiescent Curtent (CL/CP Device) (Per Package)	100	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 20 \\ & 40 \\ & 80 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \\ & \hline \end{aligned}$	20 40 80	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	\#Ade
Total Supply Current* $\dagger$   (Dynamie plus Qutescant,   Per Packege)   (CL * 50 pF on ill outputs, oll bulfers switching)	${ }^{\text {I }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & I_{T}=1 \\ & I_{T}= \\ & I_{T}= \end{aligned}$	$58, \mu \mathrm{~A} / \mathrm{kHz}$ $.2 \mu \mathrm{~A} / \mathrm{kHz}$ $1.7 \mathrm{~mA} / \mathrm{kHz}$	$\begin{aligned} & 1+10 \\ & 1+i 0 \\ & i+i 0 \end{aligned}$			\#Adc

TRUTH TABLE

CARRY IN	UP/DOWN	PRESET   ENABLE	RESET	ACTION
1	$x$	0	0	No Count
0	1	0	0	Count UD
0	0	0	0	Count Down
$x$	$x$	1	0	Pront
$x$	$x$	$x$	1	Poset

SWITCHING CHARACTERISTICS $\left(C_{L}=50 \mathrm{pF} . \mathrm{T}_{A} \cdot 25^{\circ} \mathrm{C}\right)$

Charsctoriatic	Symbol	VOD	All Types			Unit
			4in	Typ	Mex	
Output Rive Time   tTLH $=(3.0 \mathrm{ny} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns}$   $t T L H=\left\{1.5 \mathrm{~m} / \mathrm{pF} \mid \mathrm{C}_{\mathrm{L}}+15 \mathrm{nt}\right.$   $\mathrm{T}_{\mathrm{LH}}+(1.9 \mathrm{~m} / \mathrm{DF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ms}$	'TLM	5.0 10 13	-	180 90 65	$\begin{aligned} & 380 \\ & 180 \\ & 130 \end{aligned}$	n!
	tTHL	5.0 10 15	-	100 50 40	200 100 80	ns
Prodegation Detay Time Clock to 0   tPLH. TPHL $=(1.7 \mathrm{nN} / \mathrm{PF}) \mathrm{C}_{\mathrm{L}}+230 \mathrm{~m}$   $\left.{ }^{\text {tPLH. TPHL }}=10.68 \mathrm{n} / \mathrm{PF}\right) \mathrm{C}_{\mathrm{L}}+97 \mathrm{~ns}$   ${ }^{1 P L H}$, IPHL $\left.=10.5 \mathrm{nN} / \mathrm{PF}\right) \mathrm{C}_{\mathrm{L}}+75 \mathrm{~m}$   Clock to Carry   ${ }_{\text {PLH }}, \mathrm{TPH}_{L}-(1.7 \mathrm{~m} / \mathrm{PF}) \mathrm{C}_{L}+230 \mathrm{~ns}$      ${ }^{\text {tPLH. }}$ PHL $-(0.5 \mathrm{~nL} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+78 \mathrm{na}$   Earry In to Exiry Out   ${ }^{\text {TPLH. }}$ (PHL $=(1.7 \mathrm{nIpF}) C_{L}+95 \mathrm{~ns}$      TPLH. $\mathrm{IPHL}_{\mathrm{L}}=(0.5 \mathrm{n} / \mathrm{PF}) \mathrm{C}_{\mathrm{L}}+35 \mathrm{~ns}$   Preset or Reset to O   ${ }^{\text {tPLH. }}$ PML $=(1.7 \mathrm{nN} / \mathrm{PF}) \mathrm{C}_{L}+230 \mathrm{~ns}$   $\left.{ }^{1} \mathrm{PLH},{ }^{\mathrm{P} P H L}=10.68 \mathrm{~mL} / \mathrm{pF}\right) \mathrm{C}_{\mathrm{L}}+97 \mathrm{~ns}$   TPLH. ${ }^{2} \mathrm{PHL}_{\mathrm{L}}=\{0.5 \mathrm{~m} / \mathrm{PF}\} \mathrm{C}_{\mathrm{L}}+75 \mathrm{~ms}$   Preset or Resut ot Curry OUt   tPLH. TPHL $=(\$ 77 \mathrm{nN} / \mathrm{DF}) \mathrm{C}_{\mathrm{L}}+465 \mathrm{~ns}$   $\left.{ }^{\text {tPLH. }}{ }^{\text {IPHL }}=10.66 \mathrm{~m} / \mathrm{PF}\right) \mathrm{C}_{\mathrm{L}}+192 \mathrm{~ms}$   ${ }^{\text {PPLH. }}$ TPHL $=(0.5 \mathrm{nN} / \mathrm{PF}) \mathrm{C}_{\mathrm{L}}+125 \mathrm{~ns}$	PLH. tPHL	5.0 10 15	-	$\begin{aligned} & 315 \\ & 130 \\ & 100 \end{aligned}$	$\begin{aligned} & 630 \\ & 280 \\ & 200 \end{aligned}$	ns
	PLH. tPHL	5.0 10 15	-	$\begin{aligned} & 315 \\ & 130 \\ & 100 \end{aligned}$	$\begin{aligned} & 630 \\ & 260 \\ & 200 \end{aligned}$	nt
	1PLH. tPHL	5.0   10   15	-	$\begin{aligned} & 180 \\ & 80 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 360 \\ & 160 \\ & 120 \\ & \hline \end{aligned}$	ns
	tPLH.   tPHL	5.0 10 15	-	$\begin{aligned} & 315 \\ & 130 \\ & 100 . \end{aligned}$	$\begin{aligned} & 630 \\ & 280 \\ & 200 \\ & \hline \end{aligned}$	n*
	$\begin{aligned} & \text { IPLH: } \\ & \text { PPHL } \end{aligned}$	5.0 10 15	-	$\begin{array}{r} 550 \\ 225 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & 1100 \\ & 450 \\ & 300 \end{aligned}$	ns
Clock Pulse Width	*WH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 350 \\ & 170 \\ & 140 \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 75 \\ \hline \end{gathered}$	-	ns
Clock Puint Frequincy	${ }^{\prime}$ el	5.0 10 15	-	3.0 6.0 8.0	$\begin{aligned} & 1.6 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	MHz
Presat or Reset Removal Time**	tram	5.0 10 15	180 270 180	325 115 90	-	as
Clock Rise and Fall Time	TTLH, trit	5.0 10 15	-	-	18 18 18	4
Corry Th Setup Time	${ }^{\text {tem }}$	5.0 10 15	$\begin{aligned} & 200 \\ & 120 \\ & 100 \end{aligned}$	130 60 50	-	n\%
Up/Down Setup Time	${ }^{\text {m }}$	5.0 10 15	$\begin{array}{r} 800 \\ 200 \\ 178 \\ \hline \end{array}$	250 100 76	-	ns
Praset Enable Pula Width	twh	5.0 10 15	200 100 00	100 50 40	-	nt

## Anschlußbelegung




LOGIC DIAGRAM


TIMING DIAGRAM


ELECTRICAL CHARACTERISTICS (Continued)

Characteriatie	Symbol	$\begin{aligned} & \text { Voo } \\ & \text { Vde } \end{aligned}$	Thow ${ }^{\text {* }}$		$25^{\circ} \mathrm{C}$			Thiot*		Unit
			Min	Max	Min	Typ	Max	Min	Max	
Input Current (AL Deviee)	$1{ }_{\text {in }}$	15	${ }^{*}$	$\pm 0.1$	-	\% 0.00001	$\pm 0.1$	-	$\pm 1.0$	Hade
Inour Current (CL/CP Devica)	$\mathrm{l}_{\text {in }}$	15	-	$\pm 0.3$	-	$\pm 0.00001$	$\pm 0.3$	-	$\pm 1.0$	HAdc
Input Capacitance $\left(v_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	DF
Ouiescent Current (AL Device) (Per Package)	IDO	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	MAdc
Quiescent Curren: (CL/CP Devicel (Pac Paekage)	${ }^{1} \mathrm{DD}$	$\begin{aligned} & 50 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 20 \\ 40 \\ 90 \\ \hline \end{array}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{array}{r} 20 \\ 40 \\ 80 \\ \hline \end{array}$	-	$\begin{array}{r} 150 \\ 300 \\ 600 \\ \hline \end{array}$	HAde
Tolal Supply Current ${ }^{\circ}$ ' (Dynamic plus Quirscent Per Packagel $1 C_{L}=50$ pF on all oulpuls. 1 buffers smitchingl	${ }^{1} \mathbf{T}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$								uAde

SWITCHING CHARACTERISTICS* $I C_{L}=50$ DF. $T_{A}=25^{\circ} \mathrm{C}$ )

Chernctorintic	Symbol	$v_{00}$ Vde	Min	Typ	Mex	Unit
	${ }^{1}$ TLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 40 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 80 \\ & 60 \\ & 50 \end{aligned}$	$n 3$
```Output Fan Time \(T T H L=(1.5 \mathrm{n} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+50 \mathrm{~m}\) \(T H L=(0.75 \mathrm{nN} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+37.5 \mathrm{nt}\) \(\mathrm{T} H \mathrm{H}=10.55 \mathrm{nN} / \mathrm{DF}) \mathrm{C}_{\mathrm{L}}+37.5 \mathrm{~ns}\)```	${ }^{\text {t THL }}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	-	$\begin{gathered} 125 \\ 75 \\ 65 \end{gathered}$	$\begin{aligned} & 250 \\ & 150 \\ & 130 \end{aligned}$	ns
Dete Propegetion Deliy Time $\begin{aligned} & \Psi L H=(0.40 \mathrm{nz} / \mathrm{DF}) C_{L}+620 \mathrm{~ns} \\ & \Psi L H=10.25 \mathrm{~ns} / \mathrm{DF}) C_{L}+237.5 \mathrm{~ns} \\ & \left.\Psi \mathrm{PH}^{2}=10.20 \mathrm{nN} / \mathrm{DF}\right) C_{L}+165 \mathrm{~ns} \end{aligned}$	tpl	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 840 \\ 250 \\ 175 \end{array}$	$\begin{aligned} & 1280 \\ & 500 \\ & 350 \end{aligned}$	ns
	tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 720 \\ 290 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 1440 \\ & 590 \\ & 400 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { Blank Prooegetion Ovioy Timp } \\ & \text { 甲LH }=(0.30 \mathrm{n} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+305 \mathrm{~ns} \\ & \text { फLH }=(0.25 \mathrm{n} / \mathrm{pF}) C_{L}+117.5 \mathrm{~ns} \\ & \text { tPLH }=(0.15 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+92.5 \mathrm{~ns} \end{aligned}$	PLH	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	-	$\begin{aligned} & 600 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 750 \\ & 300 \\ & 220 \end{aligned}$	$n 1$
$\begin{aligned} & \varphi H_{L}=(0.85 \mathrm{n} / \mathrm{pF}) C_{L}+442.5 \mathrm{~m} \\ & 甲 H L=(0.45 \mathrm{n} / \mathrm{pF}) C_{L}+177.5 \mathrm{~ns} \\ & \varphi H L=(0.35 \mathrm{~ns} / \mathrm{pF}) C_{L}+142.5 \mathrm{~m} \end{aligned}$	¢HL	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 485 \\ & 200 \\ & 180 \\ & \hline \end{aligned}$	970 400 320	n*
$\begin{aligned} & \text { Lemp Tast Propegation Dolay Time } \\ & \text { ¢LH }=(0.45 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+290.5 \mathrm{~ns} \\ & \text { PLH }^{\mathrm{LH}}=(0.25 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+112.5 \mathrm{~ns} \\ & \Psi \mathrm{LH}=(0.20 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+80 \mathrm{~ms} \end{aligned}$	\$LH	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	-	$\begin{aligned} & 313 \\ & 125 \\ & 90 \end{aligned}$	$\begin{aligned} & 625 \\ & 250 \\ & 180 \end{aligned}$	n
$\begin{aligned} & \varphi H L=(1.3 \mathrm{~ns} / \mathrm{DF}) C_{L}+249 \mathrm{~ns} \\ & \varphi H L=(0.45 \mathrm{~ns} / \mathrm{DF}) C_{L}+102.5 \mathrm{~ns} \\ & \varphi \mathrm{HL}=(0.35 \mathrm{~ns} / \mathrm{dF}) \mathrm{C}_{\mathrm{L}}+72.5 \mathrm{~mm} \end{aligned}$	\$HL	$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	-	$\begin{aligned} & 313 \\ & 125 \\ & 90 \end{aligned}$	$\begin{aligned} & 625 \\ & 250 \\ & 180 \\ & \hline \end{aligned}$	$n 3$
Satup Time	${ }^{10}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 180 \\ & 78 \\ & 40 \end{aligned}$	$\begin{aligned} & 90 \\ & 38 \\ & 20 \end{aligned}$	-	$n 3$
Hold Time	t^{\prime}	$\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -\infty 0 \\ & -38 \\ & -20 \\ & \hline \end{aligned}$	\pm	n*
Latch Enable Putie Width	IWL	50	520	280	-	n8

Wahrheitstabelle

Eingluge							Ancting							Amsel ${ }^{\text {ce }}$
Q	$G 1$	$\angle 7$	θ	4	2	1	14	13	4	17		$7 F$	15	
K	\mathbf{x}	0	I	$\mathbf{\Sigma}$	I	I	1	1	1	1	1	1	1	1
I	0	1	I	$\underline{8}$	\mathbf{X}	\bar{X}	0	0	0	0	0	0	0	keine
0	1	1	0	0	0	0	1	1	1	1	1	1	6	6
0	1	1	0	0	0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
0	1	1	0	1	0	0	0	1	1	0	0	1	1	4
0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	1	0	0	0	1	1	1	1	1	
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	$\underline{0}$
0	1	1	1	0	0	1	1	1	1	0	0	1	1	-
0	1	1	1	0	1	0	0	0	0	0	6	0	θ	Eeine
0	1	1	1	0	1	1	6	0	0	0	0	0	0	kelm
0	1	1	1	1	0	0	0	0	0	0	0	0	0	Lel
0	1	1	1	1	0	1	0	0	0	0	0	0	\cdots	teite
0	1	1	1	1	1	0	0	0	0	0	0	0	0	kelme
0	1	1.	1	1	1	1	0	0	0	0	0	0	0	keing
1	1	1	I	X	X	I				$\%$				\%

$X=$ Don't Care

Abhängig vom BCD-Code, der während der 0•1-Flanke an C 2 an den Addresseingängen anliegt.

Anschlußbelegung und LED•Zuordnung

DIEPLAY

ELECTRICAL CHARACTERISTICS

Charncteristic	Symbol	$\begin{aligned} & \text { VDo } \\ & \text { Vde } \end{aligned}$	${ }^{1} 100{ }^{\text {a }}$		$25^{\circ} \mathrm{C}$			Thigh ${ }^{\text {c }}$		Unit
			Min	Max	Min	Tro	Max	Min	Max	
Outout Voltage$V_{\text {in }} \mathrm{V}_{\text {OO }} \mathrm{or} 0$	V_{OL}	5.0	-	0.05	-	0	0.05	-	0.05	Vdc
		10	-	0.05	-	0	0.05	-	0.05	
		15	-	0.05	-	0	0.05	-	0.05	
$v_{\text {in }} \cdot 0$ or $v_{\text {DO }} \quad$ " 1 " Lever	Von	5.0	4.95	-	4.95	5.0	-	4.95	-	Vde
		10	9.95	-	9.95	10	-	9.95	-	
		15	14.95	-	14.95	15	-	14.95	-	
	v_{16}									Vac
		5.0	-	1.5	-	2.25	1.5	-	1.5	
		10	-	3.0	-	4.50	3.0	-	3.0	
		15	-	4.0	-	6.75	4.0	-	40	
	$V_{\text {IM }}$									
$\begin{aligned} & \left(\mathrm{V}_{0}=0.5 \text { or } 4.5 \mathrm{~V} \text { de }\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Voc}\right) \end{aligned}$		5.0	3.5	-	3.5	2.75	-	3.5	-	Vac
		10	7.0	-	7.0	5.50	-	7.0	-	
(V_{O} - 1.5 or 13.5 Vde$)$		15	11.0	-	11.0	8.25	-	11.0	-	
Output Orive Current (AL Devicel	${ }^{1} \mathrm{OH}$									made
($\mathrm{VOH}=2.5 \mathrm{Vac}$) Source		5.0	-12	-	-1.0	-1.7	-	-0.7	-	
(VOH $=4.6 \mathrm{Vac}$)		5.0	-0.25	-	-0.2	-0.36	-	-0.14	-	
($\mathrm{VOH}_{\mathrm{OH}}-9.5 \mathrm{~V}$ dc)		10	-0.62	-	-0.5	-0.9	-	-0.35	-	
$\left.1 \mathrm{~V}_{\mathrm{OH}}-13.5 \mathrm{Vac}\right)$		15	-1.8	-	-1.5	-3.5	-	-1.1	-	
($\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vacl}$) Sink	1 OL	5.0	0.64	-	0.51	0.88	-	0.36	-	mads
(VOL		10	1.6	-	1.3	2.25	-	0.9	-	
$(\mathrm{VOL}=1.5 \mathrm{~V}$ (e) $)$.		15	4.2	-	3.4	8.8	-	2.4	-	
Output Drive Curremt (CL/CP Devical	${ }^{\text {'OH }}$									made
$\left(\mathrm{V}_{\mathrm{OH}}-2.5 \mathrm{Vdc}\right)$ Sourc*		5.0	-1.0	-	-0.8	-1.7	-	-0.6	-	
$\left(\mathrm{VOH}_{\mathrm{OH}}-4.6 \mathrm{Vac}\right)$		5.0	-0.2	-	-0.16	-0.36	-	-0.12	-	
($\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{VdCl}$		10	-0.5	-	-0.4	-0.9	-	-0.3	-	
($\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdel}$		15	-1.4	-	-1.2	-3.5	-	-10	-	
($\mathrm{VOL}_{\text {- }}-0.4 \mathrm{Vdcl}$ S Sink	${ }^{101}$	5.0	0.52	-	0.44	0.88	-	0.36	-	mAdc
($\mathrm{VOL}=0.5 \mathrm{Vact}$		10	1.3	-	1.1	2.25	-	0.9	-	
$\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vac}\right)$		15	3.6	-	3.0	8.8	-	2.4	-	
Input Current (AL Oevicel	1 in	15	-	± 0.1	-	± 0.00001	20.1	-	± 10	HAde
Inout Current (CL/CP Denceal	lin	15	-	20.3	-	\%0.00001	± 0.3	-	: 1.0	UAde
Input Cespecitanct $\left(V_{\text {in }}=0\right)$	$\mathrm{c}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	DF
Ourascont Curtent (AL Devicel) (Pet Packaga)	100	5.0	-	5.0	-	0.005	5.0	-	150	WAdc
		10	-	10	-	0.010	10	-	300	
		15	-	20	-	0.015	20	-	600	
Ouiescent Current (CL/CP Oevice) (Per Peckege)	'00	5.0			-		20	-	150	«Adc
		10	-	40	-	0.010	40	-	300	
		15	-	80	-	0.015	B0	-	800	
Total Supply Current ${ }^{\circ}$ 't 10ynemic plus Qurement. Por Packegel $1 C_{L}=50$ pF on al outputs, 21 bulfors awitehing	${ }^{\prime} \mathbf{T}$	50	$I_{T}=(0.58 \mu A / \mathrm{kHz}) \mathrm{t}+\mathrm{I}_{00}$ $I_{T}=(1.2 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{i}+\mathrm{I}_{\mathrm{OD}}$ ${ }^{\prime} T=(1.7 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{OD}}$							HAdc
		10								

TRUTH TABLE

CARAYIN	UP/DOWN	PRESET ENABLE	RESET	ACTION
1	x	0	0	No Count
0	1	0	0	Couni UD
0	0	0	0	Couni Down
x	x	1	0	Preset
x	x	x	1	Peset

Anschlußbelegung

THAING DIAGRAM

SWITCHING CHARACTERISTICS* $\left(C_{L}-50 \mathrm{DF}, \mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right)$

Chersetwortie	Symbol	V00	min	Typ	Msx	Unit
Output Riso Time $\begin{aligned} & T L H=(3.0 \mathrm{n} / \mathrm{pF}) C_{L}+30 \mathrm{~nm} \\ & T \mathrm{TH}=(1.5 \mathrm{ng} / \mathrm{pF}) C_{L}+15 \mathrm{nt} \\ & T L H=(1.1 \mathrm{~ns} / \mathrm{pF}) C_{L}+10 \mathrm{~ns} \end{aligned}$	TLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 180 \\ & 90 \\ & 65 \end{aligned}$	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	n
$\begin{aligned} & \text { Outqut Fall Time } \\ & \text { THL }=(1.5 \mathrm{~ns} / \mathrm{pF}) C_{L}+25 \mathrm{~ns} \\ & \text { THL }-10.75 \mathrm{nN} / \mathrm{pF}) C_{L}+12.5 \mathrm{~ns} \\ & \text { THHL }=(0.55 \mathrm{~ns} / \mathrm{pF}) C_{L}+9.5 \mathrm{nt} \end{aligned}$	THL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
```Procegation Doloy Tirm* Clock to Out tPLH, tPHL = (1.7 n*/pF) CL + 115 ns tPLH, 4PHL = {0.68 nu/pF\| CL + 87 ns IPLH, 'PHL = (0.5 n/mF) CL+45 ns```	PPHL. tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 200 \\ 100 \\ 70 \end{gathered}$	$\begin{aligned} & 400 \\ & 200 \\ & 140 \\ & \hline \end{aligned}$	ns
Clock to Out	PLH. tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 125 \\ 65 \\ 45 \end{array}$	$\begin{array}{r} 250 \\ 130 \\ 90 \\ \hline \end{array}$	ns
Clock to $E_{\text {out }}$      ${ }^{\text {tPLH }}{ }^{\text {TPHL }}=(0.68 \mathrm{nt} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+97 \mathrm{~ns}$   ${ }^{T} P L H_{4}{ }^{1 P H L}=(0.5 \mathrm{~m} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+60 \mathrm{~m}$	$\begin{aligned} & \mathrm{TPLH}, \\ & \mathrm{~T}, \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 295 \\ & 130 \\ & 85 \end{aligned}$	$\begin{aligned} & 590 \\ & 260 \\ & 170 \\ & \hline \end{aligned}$	nz
```Clock to '9" tPLH, 4PHL= (1.7 n*/pF) CL + 315 ns tPLH, tPHL = (0.68 n*/pF) CL}+122 n```	「PLH, *PHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & 400 \\ & 155 \\ & 110 \end{aligned}$	$\begin{aligned} & 800 \\ & 310 \\ & 220 \end{aligned}$	ns
Set or Cleer to Out $\begin{aligned} & . \mathrm{tPHL}=(1.7 \mathrm{~ns} / \mathrm{pF}) C_{L}+295 \mathrm{~ns} \\ & t_{P H L}=(0.68 \mathrm{n} / \mathrm{p} F) C_{L}+132 \mathrm{~ns} \\ & t_{P H L}=(0.5 \mathrm{~ns} / \mathrm{pF}) C_{L}+85 \mathrm{n} \end{aligned}$	4HL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 380 \\ & 165 \\ & 110 \end{aligned}$	$\begin{aligned} & 760 \\ & 330 \\ & 220 \\ & \hline \end{aligned}$	$n 8$
Cescend to Out $\begin{aligned} & t P H L=(1.7 \mathrm{n} / \mathrm{pF}) C_{L}+40 \mathrm{~ms} \\ & t P H L=(0.68 \mathrm{n} / \mathrm{pF}) C_{L}+32 \mathrm{~ns} \\ & \mathrm{P}_{\mathrm{PHL}}=(0.5 \mathrm{~nm} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	¢LH	$\begin{aligned} & 5.0 \\ & 10 \\ & 18 \end{aligned}$	-	$\begin{gathered} 125 \\ 65 \\ 45 \\ \hline \end{gathered}$	$\begin{aligned} & 250 \\ & 130 \\ & 90 \\ & \hline \end{aligned}$	ns
Strobe to Out $\begin{aligned} & t P H L=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+145 \mathrm{~ms} \\ & t_{P H L}=(0.68 \mathrm{~ns} / \mathrm{pF}) C_{L}+72 \mathrm{~ns} \\ & t_{P H L}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+45 \mathrm{~ns} \end{aligned}$	tPLH	$\begin{aligned} & 8.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 230 \\ 105 \\ 70 \end{gathered}$	$\begin{aligned} & 260 \\ & 210 \\ & 140 \end{aligned}$	$n 8$
Clock Pulse Wideth	twh	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 500 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 250 \\ & 110 \\ & 80 \end{aligned}$	-	H8
Clock Pulse Froquency	${ }^{\text {cti }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	MHz
Clock Pulse Rive and Fedl Time	TLH, 'THL	$\begin{aligned} & 5.0 \\ & 10 \\ & 18 \end{aligned}$	-	-	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	H3
Spt or Cleer Pula Width	TWH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 240 \\ 100 \\ 76 \\ \hline \end{gathered}$	$\begin{aligned} & 80 \\ & 35 \\ & 30 \\ & \hline \end{aligned}$	-	n
Set Removal Time	${ }^{\text {tram }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -20 \\ & -10 \\ & -7.5 \\ & \hline \end{aligned}$	-	n3
Enuble In Satud Time	5	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \\ & 120 \end{aligned}$	$\begin{aligned} & \hline 175 \\ & 60 \\ & 45 \\ & \hline \end{aligned}$	-	ni

TRUTH TABLE

Anschlußbelegung

Beispiel

13
Fin $H_{1}=4, y_{2}=6$

$$
\operatorname{vird}!_{L}=t_{E} \cdot 0.46
$$

$f_{E} / 100$

SWITCHING CHARACTERISTICS ${ }^{\circ} \quad\left(C_{L}=\right.$ to DF, $\left.\mathrm{T}_{A}=25^{\circ} \mathrm{C}\right)$

Chwacteristie	Symbol	Vod	Min	Typ	Max	Unit
Output Rise Time $\begin{aligned} & \mathrm{T}_{\mathrm{TLH}}=(3.0 \mathrm{~ns} / \mathrm{DF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns} \\ & \mathrm{~T}_{\mathrm{T}} \mathrm{LH}=(1.5 \mathrm{~ns} / \mathrm{DF}) \mathrm{C}_{\mathrm{L}}+15 \mathrm{~ns} \\ & \mathrm{~T}_{\mathrm{TH}}=(1.1 \mathrm{~ns} / \mathrm{DF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns} \end{aligned}$	'TLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 180 \\ 90 \\ 65 \end{gathered}$	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	n
$\begin{aligned} & \text { Output Fall Time } \\ & \text { ITHL }=(1.5 \mathrm{~ns} / \mathrm{DF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \text { ITHL }=(0.75 \mathrm{~ns} / \mathrm{DF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \text { ITHL }=(0.55 \mathrm{~ns} / \mathrm{pF}) C_{L}+9.5 \mathrm{~ms} \end{aligned}$	tTHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	(18
Propagation Delay Time $\begin{aligned} & A, C, W=V D D: B, E=\text { Gnd: } D=P_{\text {ulse }} \text { Generator } \\ & t P L H=(1.7 \mathrm{~ns} / \rho F) C_{L}+290 \mathrm{~ns} \\ & t_{P L H}=(0.66 \mathrm{~ns} / \rho F) C_{L}+127 \mathrm{~ns} \\ & T_{L H}=(0.5 \mathrm{nt} / \rho F) C_{L}+85 \mathrm{n} \end{aligned}$	${ }^{1 P}$ LH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 375 \\ & 160 \\ & 110 \end{aligned}$	$\begin{aligned} & 960 \\ & 400 \\ & 300 \end{aligned}$	ns
$\begin{aligned} & t_{\mathrm{PHL}}=(1.7 \mathrm{~ns} / \mathrm{DF}) C_{L}+345 \mathrm{~ns} \\ & t_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+162 \mathrm{~ns} \\ & t_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+95 \mathrm{~ns} \end{aligned}$	1 PHL	5.0 10 15	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 430 \\ & 195 \\ & 120 \\ & \hline \end{aligned}$	$\begin{gathered} 1200 \\ 540 \\ 410 \\ \hline \end{gathered}$	ns
	${ }^{1 P}$ LH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & 255 \\ & 120 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 640 \\ & 300 \\ & 210 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & t_{\mathrm{PHL}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+195 \mathrm{~ns} \\ & t_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{\rho F}) \mathrm{C}_{\mathrm{L}}+92 \mathrm{~ns} \\ & t_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \rho F) C_{L}+75 \mathrm{~ns} \end{aligned}$	1PHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 280 \\ & 125 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 750 \\ 330 \\ 250 \\ \hline \end{array}$	n
	PLH. tPHL	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	-	$\begin{gathered} 230 \\ 105 \\ 75 \\ \hline \end{gathered}$	$\begin{aligned} & 575 \\ & 265 \\ & 190 \\ & \hline \end{aligned}$	ns

Beispiete

SWITCHING CHARACTERISTICS $\quad\left(C_{L}-50 \mathrm{DF}, T_{A}=25^{\circ} \mathrm{C}\right)$

Charscterintic	Symbol	Voo	Min	Typ	Max	Unit
$\begin{aligned} & \text { Output Alise Time } \\ & T L H=(3.0 \mathrm{~ns} / \mathrm{pF}) C_{L}+30 \mathrm{~ns} \\ & \text { tTLH }=\{1.5 \mathrm{~ns} / \mathrm{pF}) C_{L}+15 \mathrm{~ms} \\ & \text { TTLH }=(1.1 \mathrm{~ns} / \mathrm{pF}) C_{L}+10 \mathrm{~ms} \end{aligned}$	TLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 180 \\ 90 \\ 65 \end{gathered}$	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	m
$\begin{aligned} & \text { Output Foll Time } \\ & \text { THL }=(1.5 \mathrm{~ms} / \mathrm{pF}) C_{L}+25 \mathrm{~ns} \\ & \text { tTHL }=10.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \text { TTHL }=(0.55 \mathrm{~m} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	tTHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 100 \\ 50 \\ 40 \\ \hline \end{array}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	$n 3$
```Propagation Delay Time A or }8\mathrm{ to S tPLH, 'PHL = (1.7 ns/DF) CL + 655 ns IPLH, 'PHL = (0.88 ns/pF) CL * 297 ns tPLH, '9HL}=10.5\textrm{ns}/\textrm{pF})\mp@subsup{C}{L}{}+195\textrm{ns```	$\begin{aligned} & \text { iPLH, } \\ & \text { IPHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{array}{r} 750 \\ 330 \\ 720 \end{array}$	$\begin{aligned} & 2100 \\ & 900 \\ & 675 \end{aligned}$	ns
$A$ or 8 to Cout   ${ }^{1} \mathrm{PLH}_{4}$ TPHL $-(1.7 \mathrm{~nL} / \mathrm{PF}) \mathrm{C}_{L}$ - 565 ns   'PLH. ${ }^{1 P H L}=(0.66 \mathrm{~ns} / \mathrm{DF}) \mathrm{C}_{\mathrm{L}} * 197 \mathrm{~ns}$   (PLH. ${ }^{1 P H L}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+145 \mathrm{~ns}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	--	$\begin{aligned} & 650 \\ & 230 \\ & 170 \end{aligned}$	$\begin{array}{r} 1800 \\ 600 \\ 450 \\ \hline \end{array}$	ni
		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 550 \\ & 220 \\ & 160 \end{aligned}$	$\begin{gathered} 1500 \\ 600 \\ 450 \end{gathered}$	m
```Turn-Oll Delay Time \(\mathrm{C}_{\mathrm{in}}\) to S tPLH \(=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+715 \mathrm{~ns}\) \(\mathrm{tPLH}^{+}=(0.66 \mathrm{nB} / \mathrm{pF}) \mathrm{C}_{L}+197 \mathrm{~ns}\) \({ }^{(P L H}+(0.5 \mathrm{ni} / \mathrm{pF}) C_{L}+215 \mathrm{nt}\)```	tp LH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{array}{r} 800 \\ 350 \\ 240 \\ \hline \end{array}$	$\begin{gathered} 2250 \\ 975 \\ 750 \\ \hline \end{gathered}$	ns
Turn On Deley Time $C_{1 n}$ to 5 $\begin{aligned} & \mathrm{tPHL}=(1.7 \mathrm{~ns} / \mathrm{pF}) C_{L}+566 \mathrm{~ns} \\ & \mathrm{t} \mathrm{PHL}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{L}+197 \mathrm{~ns} \\ & \mathrm{PHL}=(0.5 \mathrm{~ms} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+145 \mathrm{~ns} \end{aligned}$	TPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 650 \\ & 230 \\ & 170 \end{aligned}$	$\begin{aligned} & 1800 \\ & 600 \\ & 450 \\ & \hline \end{aligned}$	ns

Wahrheitstabelleund Anschlußbeleging 4560

INPUT									OUTPUT				
A4	A3	A2	AI	84	B3	B2	81	C_{10}	$\mathrm{C}_{\text {OU1 }}$	S4	S3	S2	S1
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1
0	1	0	0	0	0	1	1	0	0	0	1	1	1
0	1	0	0	0	0	1	1	1	0	1	0	0	0
0	1	1	1	0	1	0	0	0	1	0	0	0	1
0	1	1	1	0	1	0	0	1	1	0	0	1	0
1	0	0	0	0	1	0	1	0	1	0	0	1	1
0	1	1	0	1	0	0	0	0	1	0	1	0	0
1	0	0	1	1	0	0	1	1	1	1	0	0	1

Wahrheitstabelle und Anschlußbelegung 4561

2	Comp	Comp	F1	F2	F3	F4	Mode
0	0	0					
0	0	1	$A 1$	$A 2$	$A 3$	$A 4$	Straigntinroujn
0	1	1					
0	1	0	$\bar{A} 1$	$A 2$	$A 2 \bar{A} 3+\bar{A} 2 A 3$	$\bar{A} 2 \bar{A} 3 \bar{A} 4$	Complement
1	\times	\times	0	0	0	0	Zero

$x=$ Don't Cere.

SWITCHING CHARACTERISTICS* $\quad\left(C_{L}=50 \mathrm{DF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Charactarimic	Symbol	Vod	Min	Typ	Max	Unit
Output Rise Time $\mathrm{t}_{\mathrm{T} L \mathrm{H}}=(3.0 \mathrm{~ns} / \mathrm{DF}) \mathrm{C}_{\mathrm{L}} \cdot 30 \mathrm{~ns}$ ${ }^{1} T L H=(1.5 \mathrm{~ns} / \mathrm{DF}) \mathrm{C}_{\mathrm{L}}+15 \mathrm{~ns}$ $\mathrm{T} \mathrm{TLH}=(1.1 \mathrm{nt} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns}$	TLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 180 \\ & 90 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	ns
```Outpus Fall Time TTHL= 11.5 ns/ofl CL + 25 ns 'THL}=10.75\textrm{ns}/\textrm{DF})\mp@subsup{C}{L}{}+12.5 n TTHL= (0.55 ns/pF) CL + 9.5 ns```	tTHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	$n 3$
```TurnOf4 Delay Time tPLH, tPHL = {1.7 ns/pF) C C + 345 ns TPLH, 'PHL=(0.66 ns/pF) CL + 147 ns !PLH, 'PHL - (0.5 ns/pF) CLL + 105 ns```	PLH. ${ }^{t_{P H L}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 430 \\ & 180 \\ & 130 \end{aligned}$	$\begin{aligned} & 860 \\ & 360 \\ & 260 \end{aligned}$	$m$

The formule given is for the typical characteristics only.

TRUTH TABLE

INPUTS							OUTPUTS		
COMPARING				CASCADING					
A3, 83	A2, B2	A1, 81	AO, 80	$A<B$	$A=B$	$A>B$	$A<B$	A $=8$	$A>8$
A3>83	\times	x	x	\times	x	1	0	0	1
A3.83	A2>82	\times	\times	x	x	1	0	0	1
A3-83	A2-82	$A_{1}>{ }^{\text {P }} 1$	x	x	x	1	0	0	1
A3-83	A2-82	A1-81	AO>BO	\times	\times	1	0	0	1
A3-83	A2-82	A1-81	AO-BO	0	0	1	0	0	1
A3-83	A2-82	A1-81	AO-BO	0	1	1	0	1	0
A3-83	A2-82	A1-B1	A0-B0	1	0	1	1	0	0
A3=83	A2-82	A1-81	AO<BO	x	X	\times	1	0	0
A3-83	A2-82	A $1<81$	\times	x	x	x	1	0	0
A3-83	A2<B2	x	\times	\times	x	x	1	0	0
$A^{\prime} 3<83$	\times	\times	\times	\times	\times	\times	1	0	0

$x=$ Don'r Care

Anschlußbelegung

Beispiel für einen dreidekadigen Vergleich

[^0]: ${ }^{1}$ Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.
 ${ }^{2}$ Long-term input offset voltage stability refers to the averaged trend time of $V_{0 s}$ vs. the time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in Vos during the first 30 operating days are typically $2.5 \mu \mathrm{~V}$. Refer to the Typical Performance Characteristics section. Parameter is sample tested.
 ${ }^{3}$ Sample tested.
 ${ }^{4}$ Guaranteed by design.
 ${ }^{5}$ Guaranteed but not tested.

[^1]: All trademarks are the property of their respective owners.

[^2]: * Specifications same as OPA227P, U.

[^3]: * Specifications same as OPA228P, U.

[^4]: 1) For detailed information see chapter Package Outlines.
[^5]: 1) Mounted on Al heat sink $15 \mathrm{~mm} \times 25 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
[^6]: 1) Pulse test: $t \leq 300 \mu \mathrm{~s}, D \leq 2 \%$.
[^7]: 1) For detailed information see chapter Package Outlines.
[^8]: 1) Mounted on Al heat sink $15 \mathrm{~mm} \times 25 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
[^9]: 1) Pulse test: $t \leq 300 \mu \mathrm{~s}, D \leq 2 \%$.
